Duvall Jr., T. L.; Hanasoge, S. M.; Chakraborty, S.: Additional Evidence Supporting a Model of Shallow, High-Speed Supergranulation. Solar Physics 289 (9), S. 3421 - 3433 (2014)
Hanasoge, S. M.: Measurements and kernels for source-structure inversions in noise tomography. Geophysical Journal International 196 (2), S. 971 - 985 (2014)
Hanasoge, S. M.; Sreenivasan, K. R.: The Quest to Understand Supergranulation and Large-Scale Convection in the Sun. Solar Physics 289 (9), S. 3403 - 3419 (2014)
Dombroski, D. E.; Birch, A. C.; Braun, D. C.; Hanasoge, S. M.: Testing Helioseismic-Holography Inversions for Supergranular Flows Using Synthetic Data. Solar Physics 282 (2), S. 361 - 378 (2013)
Duvall Jr., T. L.; Hanasoge, S. M.: Subsurface supergranular vertical flows as measured using large distance separations in time-distance helioseismology. Solar Physics 287 (1-2), S. 71 - 83 (2013)
Hanasoge, S. M.; Branicki, M.: Interpreting cross-correlations of one-bit filtered seismic noise. Geophysical Journal International 195, S. 1811 - 1830 (2013)
Jackiewicz, J.; Birch, A. C.; Gizon, L.; Hanasoge, S. M.; Hohage, T.; Ruffio, J.-B.; Švanda, M.: Multichannel Three-Dimensional SOLA Inversion for Local Helioseismology. Solar Physics 276 (1-2), S. 19 - 33 (2012)
Luo, Y.; Hanasoge, S.; Tromp, J.; Pretorius, F.: Detectable seismic consequences of the interaction of a primordial black hole with Earth. Astrophysical Journal 751, 16 (2012)
Švanda, M.; Gizon, L.; Hanasoge, S. M.; Ustyugov, S. D.: Validated helioseismic inversions for 3D vector flows. Astronomy and Astrophysics 530, A148 (2011)
Gizon, L.; Schunker, H.; Baldner, C. S.; Basu, S.; Birch, A. C.; Bogart, R. S.; Braun, D. C.; Cameron, R.; Duvall Jr., T. L.; Hanasoge, S. M.et al.; Jackiewicz, J.; Roth, M.; Stahn, T.; Thompson, M. J.; Zharkov, S.: Erratum to: Helioseismology of Sunspots: A Case Study of NOAA Region 9787. Space Science Reviews 156, S. 257 - 258 (2010)
Ein Zusammenstoß vor fast 30 Jahren hat die Atmosphärenchemie des Jupiters nachhaltig verändert; die Nachwirkungen helfen noch immer, den Gasriesen besser zu verstehen.
Der Start ins All ist geglückt; die ESA-Raumsonde JUICE ist nun auf dem Weg ins Jupiter-System. Dort wird sie vor allem die Eismonde des Gasriesen untersuchen.
Am 13. April startet die Raumsonde JUICE auf ihre Reise zum Jupiter und seinen Eismonden. Das MPS hat wissenschaftliche Instrumente beigesteuert – und lädt zum Launch-Event ein.
In den inneren Strahlungsgürteln des Jupiters finden Forscher hochenergetische Sauerstoff- und Schwefel-Ionen – und eine bisher unbekannte Ionenquelle.
Zeitgleich mit der Raumsonde ist das JUICE-Instrument SWI in Toulouse eingetroffen. Beide werden dort auf die Reise zum Jupiter vorbereitet. Start ist in etwa einem Jahr.