Cheng , X.; Zhang, J.; Kliem, B.; Török, T.; Xing, C.; Zhou, Z. J.; Inhester, B.; Ding, M. D.: Initiation and Early Kinematic Evolution of Solar Eruptions. The Astrophysical Journal 894 (2), 85 (2020)
Dai, X.; Wang, H.; Inhester, B.: Electron Density Reconstruction of Solar Coronal Mass Ejections Based on a Genetic Algorithm: Method and Application. The Astrophysical Journal 896 (2), 155 (2020)
Feng, L.; Li, H.; Inhester, B.; Chen, B.; Ying, B.-L.; Lu, L.; Gan, W.: On the error analyses of polarization measurements of the white-light coronagraph aboard ASO-S. Research in Astronomy and Astrophysics 19 (4), 059 (2019)
Lu, L.; Inhester, B.; Feng, L.; Liu, S.; Zhao, X.: Measure the Propagation of a Halo CME and Its Driven Shock with the Observations from a Single Perspective at Earth. Astrophysical Journal 835 (2), 188 (2017)
Innes, D. E.; Heinrich, P.; Inhester, B.; Guo, L.-J.: Analysis of UV and EUV emission from impacts on the Sun after 2011 June 7 eruptive flare. Astronomy and Astrophysics 592, A17 (2016)
Tadesse, T.; Wiegelmann, T.; MacNeice, P. J.; Inhester, B.; Olson, K.; Pevtsov, A.: A Comparison Between Nonlinear Force-Free Field and Potential Field Models Using Full-Disk SDO/HMI Magnetogram. Solar Physics 289 (3), S. 831 - 845 (2014)
de Patoul, J.; Inhester, B.; Feng, L.; Wiegelmann, T.: 2D and 3D Polar Plume Analysis from the Three Vantage Positions of STEREO/EUVI A, B, and SOHO/EIT. Solar Physics 283, S. 207 - 225 (2013)
Feng, L.; Inhester, B.; Mierla, M.: Comparisons of CME Morphological Characteristics Derived from Five 3D Reconstruction Methods. Solar Physics 282 (1), S. 221 - 238 (2013)
Feng, L.; Wiegelmann, T.; Su, Y.; Inhester, B.; Li, Y. P.; Sun, X. D.; Gan, W. Q.: Magnetic Energy Partition between the Coronal Mass Ejection and Flare from AR 11283. Astrophysical Journal 765, 37 (2013)
Kramar, M.; Inhester, B.; Lin, H.; Davila, J.: Vector Tomography for the Coronal Magnetic Field. II. Hanle Effect Measurements. Astrophysical Journal 775 (1), 25 (2013)
Erstmals ist es gelungen, Bilder der Sonne aus einer Entfernung von nur 77 Millionen Kilometern einzufangen. Ein völlig neuer Blick auf unseren Stern wird so möglich.
Die Inbetriebnahme der Instrumente an Bord der ESA-Sonde Solar Orbiter nähert sich dem Ende. Alle Instrumente mit MPS-Beteiligung zeigen sich bisher in Topform.
Am 6. Februar startet der Sonnenspäher Solar Orbiter ins All. Wissenschaftlerinnen und Wissenschaftler am MPS bereiten sich auf die Inbetriebnahme der Instrumente im All vor.
In seiner Doktorarbeit hat Sudip Mandal untersucht, wie spezielle Druckwellen dazu beitragen, in der äußeren Sonnenatmosphäre Temperaturen von mehreren Millionen Grad aufrecht zu erhalten.
Die aktuelle öffentliche Vortragsreihe am MPS wirft einen Blick auf die Erforschung der Sonne: von frühen babylonischen Berechnungen bis hin zu aktuellen Weltraummissionen.