Hori, K.; Wicht, J.; Christensen, U. R.: The influence of thermo-compositional boundary conditions on convection and dynamo in a rotating spherical shell. Phys. Earth Planet. Inter. 196-197, S. 32 - 48 (2012)
Jones, C. A.; Boronski, P.; Brun, A. S.; Glatzmaier, G. A.; Gastine, T.; Miesch, M. S.; Wicht, J.: Anelastic convection-driven dynamo benchmarks. Icarus 216, S. 120 - 135 (2011)
Amit, H.; Leonhardt, R.; Wicht, J.: Polarity Reversals from Paleomagnetic Observations and Numerical Dynamo Simulations. Space Science Reviews 155 (1-4), S. 293 - 335 (2010)
Gomez-Perez, N.; Heimpel, M.; Wicht, J.: Effects of a radially varying electrical conductivity on 3D numerical dynamos. Phys. Earth Planet. Inter. 181 (1-2), S. 42 - 53 (2010)
Gomez-Perez, N.; Wicht, J.: Behavior of planetary dynamos under the influence of external magnetic fields: Application to Mercury and Ganymede. Icarus 209 (1), S. 53 - 62 (2010)
Hori, K.; Wicht, J.; Christensen, U. R.: The effect of thermal boundary conditions on dynamos driven by internal heating. Phys. Earth Planet. Inter. 182 (1-2), S. 85 - 97 (2010)
King, E. M.; Soderlund, K. M.; Christensen, U. R.; Wicht, J.; Aurnou, J. M.: Convective heat transfer in planetary dynamo models. Geochem. Geophys. Geosyst. 11, Q06016 (2010)
Manglik, A.; Wicht, J.; Christensen, U. R.: A dynamo model with double diffusive convection for Mercury's core. Earth and Planetary Science Letters 289, S. 619 - 628 (2010)
Kuipers, J.; Hoyng, P.; Wicht, J.; Barkema, G. T.: Analysis of the variability of the axial dipole moment of a numerical geodynamo model. Phys. Earth Planet. Inter. 173, S. 228 - 232 (2009)
Noir, J.; Hemmerlin, F.; Wicht, J.; Baca, S.; Aurnou, J. M.: An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans. Phys. Earth Planet. Inter. 173, S. 141 - 152 (2009)
Aubert, J.; Aurnou, J.; Wicht, J.: The magnetic structure of convection-driven numerical dynamos. Geophysical Journal International 172, S. 945 - 956 (2008)
Aurnou, J.; Heimpel, M.; Allen, L.; King, E.; Wicht, J.: Convective heat transfer and the pattern of thermal emission on the gas giants. Geophysical Journal International 173, S. 793 - 801 (2008)
Ein Zusammenstoß vor fast 30 Jahren hat die Atmosphärenchemie des Jupiters nachhaltig verändert; die Nachwirkungen helfen noch immer, den Gasriesen besser zu verstehen.
Der Start ins All ist geglückt; die ESA-Raumsonde JUICE ist nun auf dem Weg ins Jupiter-System. Dort wird sie vor allem die Eismonde des Gasriesen untersuchen.
Am 13. April startet die Raumsonde JUICE auf ihre Reise zum Jupiter und seinen Eismonden. Das MPS hat wissenschaftliche Instrumente beigesteuert – und lädt zum Launch-Event ein.
In den inneren Strahlungsgürteln des Jupiters finden Forscher hochenergetische Sauerstoff- und Schwefel-Ionen – und eine bisher unbekannte Ionenquelle.
Zeitgleich mit der Raumsonde ist das JUICE-Instrument SWI in Toulouse eingetroffen. Beide werden dort auf die Reise zum Jupiter vorbereitet. Start ist in etwa einem Jahr.