Cao, H.; Aurnou, J. M.; Wicht, J.; Dietrich, W.; Soderlund, K. M.; Russell, C. T.: A dynamo explanation for Mercury's anomalous magnetic field. Geophysical Research Letters 41 (12), S. 4127 - 4134 (2014)
Duling, S.; Saur, J.; Wicht, J.: Consistent boundary conditions at nonconducting surfaces of planetary bodies: Applications in a new Ganymede MHD model. Journal Geophysical Research 119 (6), S. 4412 - 4440 (2014)
Gastine, T.; Wicht, J.; Duarte, L. D. V.; Heimpel, M.; Becker, A.: Explaining Jupiter's magnetic field and equatorial jet dynamics. Geophysical Research Letters 41 (15), S. 5410 - 5419 (2014)
Hori, K.; Wicht, J.; Dietrich, W.: Ancient dynamos of terrestrial planets more sensitive to core-mantle boundary heat flows. Planetary and Space Science 98, S. 30 - 40 (2014)
Soderlund, K. M.; Schmidt, B. E.; Wicht, J.; Blankenship, D. D.: Ocean-driven heating of Europa's icy shell at low latitudes. Nature Geoscience 7 (1), S. 16 - 19 (2014)
Dietrich, W.; Wicht, J.: A hemispherical dynamo model: Implications for the Martian crustal magnetization. Phys. Earth Planet. Inter. 217, S. 10 - 21 (2013)
Duarte, L. D. V.; Gastine, T.; Wicht, J.: Anelastic dynamo models with variable electrical conductivity: An application to gas giants. Phys. Earth Planet. Inter. 222, S. 22 - 34 (2013)
Hori, K.; Wicht, J.: Subcritical dynamos in the early Mars' core: Implications for cessation of the past Martian dynamo. Phys. Earth Planet. Inter. 219, S. 21 - 33 (2013)
Cao, H.; Russell, C. T.; Wicht, J.; Christensen, U. R.; Dougherty, M. K.: Saturn's high degree magnetic moments: Evidence for a unique planetary dynamo. Icarus 221, S. 388 - 394 (2012)
French, M.; Becker, A.; Lorenzen, W.; Nettelmann, N.; Bethkenhagen, M.; Wicht, J.; Redmer, R.: Ab Initio Simulations for Material Properties along the Jupiter Adiabat. Astrophysical Journal, Suppl. Ser. 202 (1), 5 (2012)
Gastine, T.; Duarte, L.; Wicht, J.: Dipolar versus multipolar dynamos: the influence of the background density stratification. Astronomy and Astrophysics 546, A19 (2012)
Solar Orbiter-Aufnahmen bieten den bisher besten Blick auf eine Quellregion des Teilchenstroms von der Sonne – und finden ein bisher unbekanntes Phänomen.
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
Mit Hilfe von einzigartigen Messdaten und Computersimulationen ist der MPS-Wissenschaftler den unfassbar heißen Temperaturen der Sonnenkorona auf der Spur.
Erstmals ist es gelungen, Bilder der Sonne aus einer Entfernung von nur 77 Millionen Kilometern einzufangen. Ein völlig neuer Blick auf unseren Stern wird so möglich.
Die Inbetriebnahme der Instrumente an Bord der ESA-Sonde Solar Orbiter nähert sich dem Ende. Alle Instrumente mit MPS-Beteiligung zeigen sich bisher in Topform.