Sagawa, H.; Hartogh, P.; Rengel, M.; Lange, A.; Cavalié, T.: Preparation for the solar system observations with Herschel: Simulation of Jupiter observations with PACS. Planetary and Space Science 58 (13), S. 1692 - 1698 (2010)
Rengel, M.; Hartogh, P.; Jarchow, C.: HHSMT observations of the Venusian mesospheric temperature, winds, and CO abundance around the MESSENGER flyby. Planetary and Space Science 56, S. 1688 - 1695 (2008)
Rengel, M.; Hartogh, P.; Jarchow, C.: Mesospheric vertical thermal structure and winds on Venus from HHSMT CO spectral-line observations. Planetary and Space Science 56, S. 1368 - 1384 (2008)
Tachihara, K.; Rengel, M.; Nakajima, Y.; Yamaguchi, N.; André, P.; Neuhäuser, R.; Onishi, T.; Fukui, Y.; Mizuno, A.: Gas and Dust Condensations and a Peculiar Class 0 Object in the Lupus 3 Star-Forming Cloud. Astrophysical Journal 659, S. 1382 - 1393 (2007)
Limaye, S.; Rengel, M.: 5 - Atmospheric circulation and dynamics - Observations and knowledge gaps. In: Towards understanding the climate of Venus: Applications of terrestrial models to our sister planet, S. 55 - 72 (Hg. Bengtsson, L.; Bonnet, R.-M.; Grinspoon, D.; Koumoutsaris, S.; Lebonnois, S. et al.). Springer-Verlag, Berlin (2012)
Rengel, M.; Sagawa, H.; Hartogh, P.: Retrieval Simulations of Atmospheric Gases from Herschel observations of Titan. In: Advances in Geosciences, S. 335 - 348 (Hg. Bhardwaj, A.; Haider, S. A.; Hartogh, P.; Ip, W.-H.; Ito, T. et al.). World Scientific Publishing Co., Singapore (2011)
Rengel, M.; Küppers, M.; Keller, H. U.; Gutierrez, P.: Modeling of the Terminal Velocities of the Dust Ejected Material by the Impact. In: Deep Impact as a World Observatory Event - Synergies in Space, Time (Hg. Kaeufl, H. U.; Sterken, C.). Springer Verlag (2007)
Soderblom, D. R.; Nave, G. (Hg.): About the atomic and molecular databases in the planetary community - A contribution in the Laboratory Astrophysics Data WG IAU 2022 GA session. IAU Symposium, 2024. (2024), 87-91 S.
de Val-Borro, M.; Hartogh, P.; Jarchow, C.; Rengel, M.; Villanueva, G. L.; Küppers, M.; Biver, M.; Bockelée-Morvan, D.; Crovisier, J.: The volatile composition of comet C/2004 Q2 (Machholz) derived from submillimeter observations. In: Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society (SEA) (Hg. Guirado, J. C.; Lara, L. M.; Quilis, V.; Gorgas, J.). (2013)
Küppers, M.; Keller, H. U.; Fornasier, S.; Gutierrez, P.; Hviid, S. F.; Jorda, L.; Knollenberg, J.; Lowry, S. C.; Rengel, M.: Observations of Comet 9P/Tempel 1 and Deep Impact by the OSIRIS Cameras onboard Rosetta. In: Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength, S. 29 - 39. Springer Berlin / Heidelberg (2009)
Rengel, M.; Küppers, M.; Keller, H. U.; Gutierrez, P.: Modeling of the Terminal Velocities of the Dust Ejected Material by the Impact. In: Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength, S. 137 - 142. Springer Berlin / Heidelberg (2009)
Rengel, M.; Küppers, M.; Keller, H. U.; Gutierrez, P.; Hviid, S.: The terminal Velocity of the Deep Impact dust Ejecta. In: Revista Mexicana de Astronomía y Astrofísica (SC)., S. 25 - 26 (Hg. Magris, G.; Bruzual, G.; Carigi, L.). (2009)
Der Zwergplanet ist für seinen Kryovulkanismus bekannt. Bisher entdeckte organische Ablagerungen auf seiner Oberfläche stammen jedoch wohl nicht aus seinem Innern.
Beim ihrem ersten Vorbeiflug am Merkur fing die Sonde BepiColombo einzigartige Messdaten ein. Sie helfen, die Röntgenlicht-Polarlichter des Planeten zu verstehen.
Erstmals ausgewertete Daten der NASA-Mission Dawn legen nahe, dass im Urvara-Krater Sole aus der Tiefe empordrang und organische Verbindungen abgelagert wurden.
Der Komet 67P/Churyumov-Gerasimenko hat zum ersten Mal seit Ende der Rosetta-Mission seinen sonnennächsten Punkt erreicht und ist derzeit der Erde sehr nahe. Im Interview sprechen die MPS-Wissenschaftler Dr. Holger Sierks und Dr. Carsten Güttler über eine Wiederkehr zum Rosetta-Kometen, Kometensimulationen im Labor und das Kalibrieren von 70.000 Aufnahmen.
Beim ersten Vorbeiflug der europäisch-japanischen Doppelsonde konnten die Messinstrumente ihre künftige Arbeitsumgebung erstmals in Augenschein nehmen.