European Solar Physics Online Seminar Archiv

Auf Initiative der Universität Oslo nimmt die MPS an der Reihe "European Solar Physics Online Seminar" (ESPOS) teil. Details finden Sie hier: https://folk.uio.no/tiago/espos/ 
Ziel dieser Videokonferenzreihe ist es, Ideen mit einem spezialisierten Publikum breiter zu verbreiten und Studenten und anderen jungen Forschern, die nicht regelmäßig zu Konferenzen reisen, einen Einblick in die Spitzenforschung zu geben. Die ESPOS-Serie soll jeden zweiten Donnerstag um 11 Uhr stattfinden.  

Raum: Aquila + Bootes
The coupling of fast and Alfven magnetohydrodynamic (MHD) waves is of fundamental interest in astrophysical plasmas. Under certain conditions, Alfven waves can be resonantly excited by fast mode waves, resulting in a localised accumulation of energy in the plasma. In the solar community this is often referred to as resonant absorption, while in the magnetospheric community it's known as field line resonance. These processes have applications in coronal heating and in magnetospheric dynamics.Alfven resonances are well understood in 1D and 2D, but not so in 3D, particularly in non-Cartesian geometries. We present a theoretical way of understanding the structure and temporal development of Alfven resonances in 3D, which is corroborated by numerical simulations. [mehr]

ESP Online Seminar: Ca II 8542 Å Brightenings Induced by a Solar Microflare (C. Kuckein)

ESPOS
We study small-scale brightenings in Ca II 8542 Å line-core images to determine their nature and effect on localized heating and mass transfer in active regions. To that end, we analyzed high-resolution 2D spectroscopic observations of an active region acquired with the GREGOR Fabry-Perot Interferometer attached to the 1.5-meter GREGOR telescope onTenerife, Spain. The ground-based data were complemented with AIA and HMI images from SDO. Inversions of the spectra were carried out using NICOLE. We identified three brightenings of sizes up to 2”x2”. We found evidence that the brightenings belonged to the footpoints of a microflare (MF). The properties of the observed brightenings disqualified the scenarios of Ellerman bombs or IRIS bombs. However, this MF shared some common properties with flaring active-region fibrils or flaring arch filaments (FAFs): (1) FAFs and MFs are both apparent in chromospheric and coronal layers according to the AIA channels, and (2) both show flaring arches with lifetimes of about 3.0-3.5 min and lengths of about 20”. Moreover, the inversions revealed heating by 600 K at the footpoint location in the ambient chromosphere during the impulsive phase. Bidirectional flows were present in the footpoints of the MF. [mehr]
Zur Redakteursansicht