Warum die Sonne schwächelt

Wie sich die Aktivität der Sonne entwickeln wird, lässt sich nicht langfristig vorhersagen.

29. Juli 2015

Die Sonne ist derzeit ungewohnt zahm. Das vergangene Aktivitätsmaximum unseres Sterns Mitte 2014 blieb deutlich hinter denen der vergangenen Jahrzehnte zurück. Vergleichsweise wenige Sonnenflecken überzogen seine Oberfläche; Anzahl und Heftigkeit der Sonneneruptionen fielen geringer aus als erwartet. Einen Grund für den „Leistungsabfall“ der Sonne haben jetzt Wissenschaftler des Max-Planck-Instituts für Sonnensystemforschung (MPS) in Göttingen und der Chinesischen Akademie der Wissenschaften gefunden. Entscheidend waren ungewöhnliche magnetische Strukturen, die etwa elf Jahre zuvor an der Oberfläche der Sonne in Äquatornähe auftraten und in den folgenden Jahren das Gesamtmagnetfeld der Sonne abschwächten. Da sich Strukturen dieser Art zufällig bilden, zeigen die Rechnungen der Forscher vor allem eines: Die Stärke eines bevorstehenden Aktivitätsmaximums lässt sich nur einige Jahre im Voraus bestimmen. Langfristigere Vorhersagen sind nicht möglich.

Die Aktivität der Sonne schwankt in einem mehr oder weniger regelmäßigen Zyklus. Etwa alle elf Jahre zeigt sich unser Stern von seiner ungestümen Seite: In heftigen Eruptionen schleudert er geladene Teilchen und Strahlung ins All; starke, veränderliche Magnetfelder erscheinen an seiner sichtbaren Oberfläche und erzeugen die dunklen Sonnenflecken. Jeweils etwa sechs bis sieben Jahre später kehrt wieder Ruhe ein.

Doch trotz dieser Regelmäßigkeit ist jeder Sonnenzyklus anders. Der derzeitige Zyklus etwa, der 24. seit dem Beginn systematischer Sonnenbeobachtungen Mitte des 18. Jahrhunderts, fällt deutlich schwächer aus als seine Vorgänger. Im Maximum vor etwa einem Jahr überzogen nur etwa halb so viele Sonnenflecken die Oberfläche der Sonne wie in den frühen 90er Jahren. Besonders gewaltige Sonneneruptionen blieben im 24. Zyklus aus.

Auf der Suche nach einer Erklärung für das solare Schwächeln haben Forscher des MPS und der Chinesischen Akademie der Wissenschaften einen genauen Blick auf die Magnetfelder an der Oberfläche unseres Sterns geworfen. Neben einem großräumigen Magnetfeld, das ähnlich wie das der Erde dem eines Stabmagneten gleicht, ist das Magnetfeld der Sonne vor allem von starken, lokalen Feldern geprägt. An der Oberfläche der Sonne zeigen sich diese Felder als so genannte bipolare Regionen: zwei eng benachbarte Gebiete hoher magnetischer Feldstärke, die entgegengesetzten Magnetpolen entsprechen. Oft machen sich diese Felder bemerkbar durch die mit ihnen verbundenen dunklen Sonnenflecken.

Die Anordnung des magnetischen Pole innerhalb einer bipolaren Region folgt dabei oft einer Art Faustregel: Tritt die bipolare Region in der Nähe des Sonnenäquators auf, liegen ihre magnetischen Pole meist in Richtung der Sonnenrotation nebeneinander. Mit zunehmendem Abstand vom Äquator sind sie immer weiter gegeneinander verschoben. Oberflächennahe Plasmaströme transportieren in den Folgejahren bevorzugt die weiter vom Äquator gelegenen Teile dieser Magnetfelder nach und nach zum Nord- beziehungsweise Südpol der Sonne.

Auf diese Weise bauen die bipolaren Regionen den Stabmagnet-Anteil des Sonnenmagnetfeldes auf, welcher für die Heftigkeit des folgenden solaren Maximums ausschlaggebend ist. „Das Rätsel war, warum das Stabmagnetfeld der Sonne sich vor dem aktuellen 24. Sonnenzyklus so ungewöhnlich schwach zeigte“, erklärt Dr. Jie Jiang von der Chinesischen Akademie der Wissenschaften, Erstautorin der neuen Studie. „Nach der Faustregel für die Verschiebung der bipolaren Regionen hätte es vier Mal stärker sein müssen“, so die Astrophysikerin. 

Um das Rätsel zu lösen, berechnete die Arbeitsgruppe die Entwicklung des Stabmagnetfeldes der Sonne zwischen 1996 und 2012 auf der Grundlage von Messdaten für die bipolaren Regionen in diesem Zeitraum. Entscheidend ist dabei die genaue Verschiebung der magnetischen Pole innerhalb der bipolaren Regionen. „Während frühere Untersuchungen auf die Faustregel zurückgreifen mussten und deshalb das schwache Magnetfeld nicht erklären konnten, haben wir erstmals mit den präzisen Daten für jede einzelne bipolare Region gearbeitet", berichtet Prof. Dr. Manfred Schüssler vom MPS, der die neue Studie leitete. Die dabei verwendeten magnetischen Karten der Sonne wurden von der Weltraumsonde SoHO, einem Gemeinschaftsprojekt von ESA und NASA, aufgenommen.

Zwar zeigen die Messdaten, dass auch im 23. Sonnenzyklus die bipolaren Regionen weitgehend der Faustregel folgten. Entscheidend für das Resultat waren jedoch einige untypische Exemplare, die „verkehrt herum“ gepolt waren und so den Stabmagnet-Anteil des Sonnenmagnetfeldes abschwächten. „Treten solche Ausreißer - wie im Sonnenzyklus 24 mehrfach geschehen - in Äquatornähe auf, hat dies einen besonders großen Effekt“, beschreibt Dr. Robert Cameron vom MPS, Mitautor der Studie, das Ergebnis der Rechnungen. Als Folge war das Magnetfeld der Sonne im Aktivitätsminimum um 2009 vergleichsweise schwach – und das folgende Aktivitätsmaximum entsprechend zahm.

Die ungewöhnlichen bipolaren Regionen, die im 23. Zyklus zu sehen waren, sind eine zufällige Erscheinung. Da die bipolaren Regionen durch turbulente Plasmaströmungen im Innern der Sonne entstehen, lässt sich weder ihr Auftreten, noch die genaue Anordnung ihrer magnetischen Pole exakt vorhersagen. Dies macht es unmöglich, die Stärke eines Sonnenzyklus mehr als einige Jahre im Voraus zu bestimmen. Die Sonne bleibt ein geheimnisvoller und eigenwilliger Stern.







Zur Redakteursansicht