Kohlenstoff in Vestas Kratern

Gewaltige Einschläge von Asteroiden könnten kohlenstoffreiches Material auf den Protoplaneten und ins innere Sonnensystem getragen haben

3. Januar 2013

Der Protoplanet Vesta hat eine bewegte Vergangenheit: Aufnahmen der deutschen Framing Camera an Bord der NASA-Raumsonde Dawn, die Vesta bis September dieses Jahres etwa ein Jahr lang begleitet hat, zeigen zwei gewaltige Krater auf der Südseite des Himmelskörpers. Doch die gigantischen Einschläge haben nicht nur seine Form, sondern auch seine mineralogische Zusammensetzung dauerhaft verändert. Wissenschaftler unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Katlenburg-Lindau konnten nun zeigen, dass die beiden kosmischen Brocken, welche die Südseite der Vesta erschütterten, dunkles, kohlenstoffhaltiges Material mitbrachten. Ähnliche Ereignisse könnten in der Frühzeit des Sonnensystems auch die inneren Planeten wie die Erde mit Kohlenstoff, einem Grundbaustein organischer Verbindungen, versorgt haben.

In dieser dreidimensionalen Darstellung eines kleineren Kraters auf der Vesta ist das dunkle, kohlenstoffreiche Material im Inneren des Kraters sichtbar.

Umfangreiche Modellrechnungen der Max-Planck-Forscher unterstützen die Theorie der zwei Einschläge – und erlauben zudem genaueren Aufschluss über deren Verlauf. So konnten die Wissenschaftler in Computersimulationen bestimmen, welche Aufprallgeschwindigkeiten mit den gefundenen Konzentrationen des dunklen Materials vereinbar sind. „Alles spricht für einen vergleichsweise langsamen Zusammenstoß mit Geschwindigkeiten von weniger als zwei Kilometern pro Sekunde“, so Reddy. Der Einschlag im Nördlinger Ries im Süden Deutschlands geschah dagegen bei etwa 20 Kilometern pro Sekunde. Und auch die räumliche Verteilung des Materials, welche die Forscher berechnen konnten, entspricht dem Bild, das sich heute zeigt.

HED-Meteorite sind Bruchstücke von Vesta

Informationen über das dunkle Material liefern auch die sogenannten HED-Meteorite, die der Vesta entstammen. Einige dieser Meteoriten zeigen dunkle Einschlüsse, die ebenfalls reich an Kohlenstoff sind. Das Kürzel HED steht dabei für die Gesteinsarten Howardit, Eucrit und Diogenit, aus denen diese Meteoriten in erster Linie bestehen. „Durch genaue Analyse des dunklen Materials auf der Vesta und Vergleichen mit Laboruntersuchungen dieser Meteorite konnten wir nun den ersten direkten Beweis liefern, dass die HED-Meteorite tatsächlich Bruchstücke von Vesta sind“, so Le Corre.

Übersichtskarte der Südhalbkugel der Vesta. Die Kreise, Rauten und Sterne zeigen die Fundstellen des dunklen, kohlenstoffreichen Materials. Die rote Linie zeigt den Rand des Veneneia-Beckens, die schwarze Linie den Rand des Rheasilvia-Beckens.

„Bei unseren Analysen geht es längst nicht nur darum, die genaue Entwicklungsgeschichte der Vesta zu rekonstruieren“, betont Holger Sierks, Co-Investigator der Dawn-Mission am Max-Planck-Institut in Katlenburg-Lindau. Vielmehr wollen die Forscher die Bedingungen im frühen Sonnensystem verstehen.

Die Mission Dawn startete vor etwa fünf Jahren ins All und schwenkte am 16. Juli 2011 in eine Umlaufbahn um den Protoplaneten Vesta ein. 2015 soll die Raumsonde ihr zweites Reiseziel, den Zwergplaneten Ceres, erreichen, der wie Vesta im sogenannten Asteroidengürtel zwischen den Umlaufbahnen des Mars und des Jupiter um die Sonne kreist. Die Mission Dawn wird vom Jet Propulsion Laboratory (JPL) der amerikanischen Weltraumbehörde NASA geleitet. JPL ist eine Abteilung des California Institute of Technology in Pasadena. Die University of California in Los Angeles ist für den wissenschaftlichen Teil der Mission verantwortlich. Das Kamerasystem an Bord der Raumsonde wurde unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Katlenburg-Lindau in Zusammenarbeit mit dem Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin und dem Institut für Datentechnik und Kommunikationsnetze in Braunschweig entwickelt und gebaut. Das Kamera-Projekt wird finanziell von der Max-Planck-Gesellschaft, dem DLR und NASA/JPL unterstützt.

Zur Redakteursansicht