Rengel, M.; Reach, W.; Hartogh, P.; Sagawa, H.: Tracing the Composition of Hydrogen Cyanide in the Stratosphere of Titan from Space, Airborne, and Ground-Based Observations. ESA SCI Science Workshop #9, Aklersloot, Netherlands (2016)
Rengel, M.; Sagawa, H.; Hartogh, P.: Venusian Mesospheric thermal structure and winds from May 2009 SMT CO spectral- line observations. 40th COSPAR Scientific Assembly, Moscow, Russia (2014)
Rezac, L.; de Val-Borro, M.; Hartogh, P.; Cavalié, T.; Jarchow, C.; Rengel, M.; Dobrijevic, M.: New Determination of the HCN Profile in the Stratosphere of Neptune from Millimeter-wave Spectroscopy. Asia Oceania Geosciences Society (AOGS) 11th Annual Meeting, Sapporo, Japan (2014)
Hartogh, P.: Chirptransformations-Spektrometer für die passive Millimeterwellenradiometrie: Messungen der 142 GHz Emissionslinie des atmosphärischen Ozons. Dissertation, Georg-August-Universität Göttingen (1989)
Hartogh, P.: Raumflugtauglicher FM-Pulskompressionsempfänger mit Oberflächenwellenfiltern für die Millimeter- und Submillimeterwellenspektroskopie. Diploma, Georg-August-Universität Göttingen (1985)
Biver, N.; Bockelée-Morvan, D.; Moreno, R.; Crovisier, J.; Hartogh, P.; de Val-Borro, M.; Kidger, M.; Kueppers, M.; Szutowicz, S.; Lis, D. C.et al.; Blake, G. A.; Gonzalez, J. J.; Seargent, D. A. J.; Mattiazzo, M.: Comet C/2011 L4 (Panstarrs). Central Bureau Electronic Telegrams 3230, 1 (2012)
Meister, C.-V.; Hartogh, P.; Villanueva, G.; Berger, U.: Hydrodynamic model of the Martian atmosphere between near-surface layers and an altitude of about 130 km. Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, Germany (2002)
Gulkis, S.; Forget, F.; Janssen, M.; Riley, L.; Hartogh, P.; Clancy, T.; Allen, M.; Frerking, M.: Microwave Investigation of the Martian Atmosphere and Surface. JPL, California Institute of Technology, Pasadena, CA, USA (2000)
Gurevich, A. V.; Borison, N. D.; Montecinos-Geisse, S. E.; Hartogh, P.: Artificial ozone layer. Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, Germany (1995)
Lopez, J. E.; Montecinos, S. E.; Hartogh, P.: A photochemical model of the atmosphere. Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, Germany (1995)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.