Wei, Y.; Fraenz, M.; Dubinin, E.; Coates, A. J.; Zhang, T. L.; Wan, W.; Feng, L.; Angsmann, A.; Opitz, A.; Woch, J.et al.; Barabash, S.; Lundin, R.: A teardrop-shaped ionosphere at Venus in tenuous solar wind. Planetary and Space Science 73, pp. 254 - 261 (2012)
Angsmann, A.; Fränz, M.; Dubinin, E.; Woch, J.; Barabash, S.; Zhang, T.; Motschmann, U.: Magnetic states of the ionosphere of Venus observed by Venus Express. Planetary and Space Science 59, pp. 327 - 337 (2011)
Various application review phases in 2025. PhD projects in cosmochemistry, planetary science, solar and stellar physics, helioseismology, asteroseismology, ...
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.