Amazo-Gomez, E.; Shapiro, A.; Solanki, S. K.; Kopp, G.; Oshagh, M.; Reinhold, T.; Reiners, A.: Inflection point in the power spectrum of stellar brightness variations: III. Facular versus spot dominance on stars with known rotation periods. Astronomy and Astrophysics 642, A225 (2020)
Amazo-Gómez, E. M.; Shapiro, A.; Solanki, S. K.; Krivova, N. A.; Kopp, G.; Reinhold, T.; Oshagh, M.; Reiners, A.: Inflection point in the power spectrum of stellar brightness variations: II. The Sun. Astronomy and Astrophysics 636, A69 (2020)
Isik, E.; Shapiro, A.; Solanki, S. K.; Krivova, N. A.: Amplification of Brightness Variability by Active-region Nesting in Solar-like Stars. The Astrophysical Journal Letters 901, L12 (2020)
Nèmec, N.-E.; Isik, E.; Shapiro, A.; Solanki, S. K.; Krivova, N. A.; Unruh, Y.: Connecting measurements of solar and stellar brightness variations. Astronomy and Astrophysics 638, A56 (2020)
Reinhold, T.; Bell, K. J.; Kuszlewicz, J.; Hekker, S.; Shapiro, A.: Transition from spot to faculae domination: An alternate explanation for the dearth of intermediate Kepler rotation periods. Astronomy and Astrophysics 621, A21 (2019)
Dudok de Wit, T. D.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.: Response of Solar Irradiance to Sunspot-area Variations. The Astrophysical Journal 853 (2), 197 (2018)
Isik, E.; Solanki, S. K.; Krivova, N. A.; Shapiro, A.: Forward modelling of brightness variations in Sun-like stars: I. Emergence and surface transport of magnetic flux. Astronomy and Astrophysics 620, A177 (2018)
Karoff, C.; Metcalfe, T. S.; Santos, Â. R. G.; Montet, B. T.; Isaacson, H.; Witzke, V.; Shapiro, A.; Mathur, S.; Davies, G. R.; Lund, M. N.et al.; Garcia, R. A.; Brun, A. S.; Salabert, D.; Avelino, P. P.; van Saders, J.; Egeland, R.; Cunha, M. S.; Campante, T. L.; Chaplin, W. J.; Krivova, N. A.; Solanki, S. K.; Stritzinger, M.; Knudsen, M. F.: The Influence of Metallicity on Stellar Differential Rotation and Magnetic Activity. The Astrophysical Journal 852 (1), 46 (2018)
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).