Teriaca, L.; Banerjee, D.; Falchi, A.; Doyle, J. G.; Madjarska, M. S.: Transition region small-scale dynamics as seen by SUMER on SOHO. Astronomy and Astrophysics 427, pp. 1065 - 1074 (2004)
Koumtzis, A.; Wiegelmann, T.; Madjarska, M. S.: Computing the global coronal magnetic field during activity maximum and minimum with a newly developed nonlinear force-free Yin-Yang code. In: EGU General Assembly Conference Abstracts, pp. EGU - 17168. EGU General Assembly Conference Abstracts, Vienna, Austria, 2023. (2023)
Madjarska, M. S.; Wiegelmann, T.: Evolution of coronal hole boundaries seen in EIT 195 Å and TRACE 171 Å images. In: Modern Solar Facilities - Advanced Solar Science, pp. 249 - 252 (Eds. Kneer, F.; Puschmann, K. G.; Wittmann, A. D.). Universitätverlag Göttingen (2007)
Madjarska, M. S.: Small-scale loops in the solar corona of the quiet Sun and coronal holes. 7th East-Asia School and Workshop on Laboratory, Space, and Astrophysical Plasmas (EASW-7) , Weihai, China (2018)
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).