Wiegelmann, T.; Xia, L. D.; Marsch, E.: Links between magnetic fields and plasma flows in a coronal hole. Astronomy and Astrophysics 432, pp. L1 - L4 (2005)
Marsch, E.; Wiegelmann, T.; Xia, L. D.: Coronal plasma flows and magnetic fields in solar active regions Combined observations from SOHO and NSO/Kitt Peak. Astronomy and Astrophysics 428, pp. 629 - 645 (2004)
Wiegelmann, T.; Solanki, S. K.: Similarities and differences between coronal holes and the quiet sun: are loop statistics the key? Solar Physics 225, pp. 227 - 247 (2004)
Carcedo, L.; Brown, D. S.; Hood, A. W.; Neukirch, T.; Wiegelmann, T.: A quantitative method to optimise magnetic field line fitting of observed coronal loops. Solar Physics 218, pp. 29 - 40 (2003)
Wiegelmann, T.; Inhester, B.: Magnetic modelling and tomography: First steps towards a consistent reconstruction of the solar corona. Solar Physics 214, pp. 287 - 312 (2003)
Wiegelmann, T.; Büchner, J.: Evolution of magnetic helicity under kinetic magnetic reconnection 2. B ≠ 0 reconnection. Nonlinear Processes in Geophysics 9 (2), pp. 139 - 147 (2002)
Wiegelmann, T.; Neukirch, T.: Including stereoscopic information in the reconstruction of coronal magnetic fields. Solar Physics 208, pp. 233 - 251 (2002)
Wiegelmann, T.; Büchner, J.: Evolution of magnetic helicity in the course of kinetic magnetic reconnection 1. B=0 reconnection. Nonlinear Processes in Geophysics 8 (3), pp. 127 - 140 (2001)
Wiegelmann, T.; Büchner, J.: Kinetic simultations of the coupling between current instabilities and reconnection in thin current sheets. Nonlinear Processes in Geophysics 7, pp. 141 - 150 (2000)
Wiegelmann, T.; Schindler, K.; Neukirch, T.: Helmet Streamers with Triple Structures: Simulations of resistive dynamics. Solar Physics 191 (2), pp. 391 - 407 (2000)
Wiegelmann, T.; Neukirch, T.; Büchner, J.: Particle code simulation - Tests and limits of Vlasov code simulations and its application to null-helicity and co-helicity reconnection. In: Space Plasma Simulation, pp. 58 - 61 (Eds. Büchner, J.; Dum, C.; Scholer, M.). Copernicus Gesellschaft 2001 (2001)
Koumtzis, A.; Wiegelmann, T.; Madjarska, M. S.: Computing the global coronal magnetic field during activity maximum and minimum with a newly developed nonlinear force-free Yin-Yang code. In: EGU General Assembly Conference Abstracts, pp. EGU - 17168. EGU General Assembly Conference Abstracts, Vienna, Austria, 2023. (2023)
Lagg, A.; Ishikawa, R.; Merenda, L.; Wiegelmann, T.; Tsuneta, S.; Solanki, S. K.: Internetwork Horizontal Magnetic Fields in the Quiet Sun Chromoshpere: Results from a Joint Hinode/VTT Study. In: The Second Hinode Science Meeting: Beyond Discovery - Torward Understanding, 327 (Eds. B., L.; M., C.; T., M.; J., M.; K., R.). (2009)
Raouafi, N.-E.; Solanki, S. K.; Wiegelmann, T.: Hanle Effect Diagnostics of the Coronal Magnetic Field: A Test Using Realistic Magnetic Field Configurations. In: Solar Polarization 5: In Honor of Jan Stenflo, pp. 429 - 434 (Eds. Berdyugina, S. V.; Nagendra, K. N.; Ramelli, R.). (2009)
Teriaca, L.; Wiegelmann, T.; Lagg, A.; Solanki, S. K.; Curdt, W.; Sekii, T.; the Team, H.: Loop morphology and flows and their relation to the magnetic field. In: First Results from Hinode, p. 196 (Eds. Matthews, S.; Davis, J. M.; Harra, L. K.). (2008)
First Light! The spectro-polarimeter of the world's largest solar telescope in Hawaii looks at the Sun for the first time. The instrument was developed in Germany.
Dr. Theodosios Chatzistergos receives award by the European Space Weather and Space Climate Association for his research findings on the historical activity of the Sun.
The Zdenĕk Švetska Senior Prize of the Solar Physics Division of the European Physical Society (EPS) recognizes Solanki’s pioneering contributions to solar research.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
Application deadline 1 October 2024. PhD projects in planetary science, solar and stellar physics, solar magnetism, heliophysics, helioseismology, asteroseismology, ...