Rüster, R.; Czechowsky, P.; Schmidt, G.; Labitzke, K.: VHF radar observations in the stratosphere and mesosphere during a stratospheric warming. Journal of Atmospheric and Terrestrial Physics 45, pp. 161 - 168 (1983)
Röttger, J.; Czechowsky, P.; Schmidt, G.: First low power VHF radar observations of tropospheric, stratospheric and mesospheric winds and turbulence at the Arecibo Observatory. Journal of Atmospheric and Terrestrial Physics 43, pp. 789 - 800 (1981)
Rüster, R.; Czechowsky, P.; Schmidt, G.: VHF-Radar Measurements of Dynamical Processes in the Stratosphere and Mesosphere. Geophysical Research Letters 7, pp. 999 - 1002 (1980)
Czechowsky, P.; Rüster, R.; Schmidt, G.: Variations of Mesospheric Structures in Different Seasons. Geophysical Research Letters 6, pp. 459 - 462 (1979)
Schmidt, G.; Rüster, R.; Czechowsky, P.: Complementary code and digital filtering for detection of weak VHF radar signals from the mesosphere. IEEE Trans. Geosci. Electron. GE-17, pp. 154 - 161 (1979)
Untiedt, J.; Pellinen, R.; Küppers, F.; Opgenorth, H. J.; Pelster, W. D.; Baumjohann, W.; Ranta, H.; Kangas, J.; Czechowsky, P.; Heikkila, W. J.: Observation of the initial development of an auroral and magnetic substorm at magnetic midnight. Journal Geophysical Research 45, pp. 41 - 65 (1978)
Röttger, J.; Czechowsky, P.: Clear-air-turbulence and tropospheric refractivity variations observed with a new VHF-radar. Naturwissenschaften 64, p. 580 (1977)
Czechowsky, P.; Dieminger, W.; Kochan, H.: Backscatter results from Lindau - I. Observations of radio-auroras. Journal of Atmospheric and Terrestrial Physics 36, pp. 955 - 966 (1974)
First Light! The spectro-polarimeter of the world's largest solar telescope in Hawaii looks at the Sun for the first time. The instrument was developed in Germany.
Dr. Theodosios Chatzistergos receives award by the European Space Weather and Space Climate Association for his research findings on the historical activity of the Sun.
The Zdenĕk Švetska Senior Prize of the Solar Physics Division of the European Physical Society (EPS) recognizes Solanki’s pioneering contributions to solar research.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
Application deadline 1 October 2024. PhD projects in planetary science, solar and stellar physics, solar magnetism, heliophysics, helioseismology, asteroseismology, ...