Su, J. T.; Jing, J.; Wang, S.; Wiegelmann, T.; Wang, H. M.: Statistical Study of Free Magnetic Energy and Flare Productivity of Solar Active Regions. Astrophysical Journal 788 (2), 150 (2014)
Tadesse, T.; Pevtsov, A. A.; Wiegelmann, T.; MacNeice, P. J.; Gosain, S.: Global Solar Free Magnetic Energy and Electric Current Density Distribution of Carrington Rotation 2124. Solar Physics 289, pp. 4031 - 4045 (2014)
Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.: First use of synoptic vector magnetograms for global nonlinear, force-free coronal magnetic field models. Astronomy and Astrophysics 562, A105 (2014)
Tadesse, T.; Wiegelmann, T.; MacNeice, P. J.; Inhester, B.; Olson, K.; Pevtsov, A.: A Comparison Between Nonlinear Force-Free Field and Potential Field Models Using Full-Disk SDO/HMI Magnetogram. Solar Physics 289 (3), pp. 831 - 845 (2014)
Thalmann, J. K.; Tiwari, S. K.; Wiegelmann, T.: Force-free Field Modeling of Twist and Braiding-induced Magnetic Energy in an Active-region Corona. Astrophysical Journal 780 (1), 102 (2014)
Vemareddy, P.; Wiegelmann, T.: Quasi-static Three-dimensional Magnetic Field Evolution in Solar Active Region NOAA 11166 Associated with an X1.5 Flare. Astrophysical Journal 792 (10), 40 (2014)
Zhao, J.; Li, H.; Pariat, E.; Schmieder, B.; Guo, Y.; Wiegelmann, T.: Temporal Evolution of the Magnetic Topology of the NOAA Active Region 11158. Astrophysical Journal 787 (1), 88 (2014)
de Patoul, J.; Inhester, B.; Feng, L.; Wiegelmann, T.: 2D and 3D Polar Plume Analysis from the Three Vantage Positions of STEREO/EUVI A, B, and SOHO/EIT. Solar Physics 283, pp. 207 - 225 (2013)
Feng, L.; Wiegelmann, T.; Su, Y.; Inhester, B.; Li, Y. P.; Sun, X. D.; Gan, W. Q.: Magnetic Energy Partition between the Coronal Mass Ejection and Flare from AR 11283. Astrophysical Journal 765, 37 (2013)
Liu, C.; Deng, N.; Lee, J.; Wiegelmann, T.; Moore, R. L.; Wang, H.: Evidence for Solar Tether-Cutting Magnetic Reconnection from Coronal Field Extrapolations. Astrophysical Journal 778 (2), L36 (2013)
Nickeler, D. H.; Karlicky, M.; Wiegelmann, T.; Kraus, M.: Fragmentation of electric currents in the solar corona by plasma flows. Astronomy and Astrophysics 556, A61 (2013)
Shen, J.; Ji, H.; Wiegelmann, T.; Inhester, B.: Double Power-law Distribution of Magnetic Energy in the Solar Corona over an Active Region. Astrophysical Journal 764, 86 (2013)
Tadesse, T.; Wiegelmann, T.; MacNeice, P. J.; Olson, K.: Modeling coronal magnetic field using spherical geometry: cases with several active regions. Astrophysics and Space Science 347 (1), pp. 21 - 27 (2013)
Thalmann, J. K.; Tiwari, S. K.; Wiegelmann, T.: Comparison of force-free coronal magnetic field modeling using vector fields from Hinode and Solar Dynamics Observatory. Astrophysical Journal 769, pp. 59 - 68 (2013)
Wiegelmann, T.; Solanki, S. K.; Borrero, J. M.; Peter, H.; Barthol, P.; Gandorfer, A.; Martínez Pillet, V.; Schmidt, W.; Knölker, M.: Evolution of the Fine Structure of Magnetic Fields in the Quiet Sun: Observations from Sunrise/IMaX and Extrapolations. Solar Physics 283, pp. 253 - 272 (2013)
Chifu, I.; Inhester, B.; Mierla, M.; Chifu, V.; Wiegelmann, T.: First 4D Reconstruction of an Eruptive Prominence Using Three Simultaneous View Directions. Solar Physics 281, pp. 121 - 135 (2012)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.