Andriopoulou, M.; Roussos, E.; Krupp, N.; Paranicas, C.; Thomsen, M.; Krimigis, S.; Dougherty, M.; Glassmeier, K.-H.: Spatial and temporal dependence of the convective electric field in Saturn's inner magnetosphere. Icarus 229, pp. 57 - 70 (2014)
Roussos, E.; Andriopoulou, M.; Krupp, N.; Kotova, A.; Paranicas, C.; Krimigis, S. M.; Mitchell, D. G.: Numerical simulation of energetic electron microsignature drifts at Saturn: Methods and applications. Icarus 226 (2), pp. 1595 - 1611 (2013)
Andriopoulou, M.; Roussos, E.; Krupp, N.; Paranicas, C.; Thomsen, M.; Krimigis, S.; Dougherty, M. K.; Glassmeier, K. -.: A noon-to-midnight electric field and nightside dynamics in Saturns inner magnetosphere, using microsignature observations. Icarus 220, pp. 503 - 513 (2012)
Thomsen, M. F.; Roussos, E.; Andriopoulou, M.; Kollmann, P.; Arridge, C. S.; Paranicas, C. P.; Gurnett, D. A.; Powell, R. L.; Tokar, R. L.; Young, T. D.: Saturn's inner magnetospheric convection pattern: Further evidence. Journal Geophysical Research 117, A09208 (2012)
Roussos, E.; Krupp, N.; Mitchell, D. G.; Paranicas, C.; Palmaerts, B.; Paranicas, C.; Krimigis, S. M.; Andriopoulou, M.; Kurth, W. S.; Badman, S.et al.; Masters, A.; Dougherty, M. K.: Quasi-Periodic injections of relativistic electrons in Saturn's magnetosphere. European Planetary Science Congress EPSC, Cascais, Portugal (2014)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.