Bhatia, T. S.; Panja, M.; Cameron, R. H.; Solanki, S. K.: 3D radiative MHD simulations of starspots: II. Large-scale structure. Astronomy and Astrophysics 693, p. A264 (2025)
Bekki, Y.; Cameron, R. H.; Gizon, L.: The Sun's differential rotation is controlled by high-latitude baroclinically unstable inertial modes. Science Advances 10, p. eadk5643 (2024)
Bekki, Y.; Cameron, R. H.; Gizon, L.: The Sun's differential rotation is controlled by high-latitude baroclinically unstable inertial modes. Science Advances 10, p. eadk5643 (2024)
Bhatia, T. S.; Cameron, R.; Peter, H.; Solanki, S.: Small-scale dynamo in cool stars. III. Changes in the photospheres of F3V to M0V stars. Astronomy and Astrophysics 681, p. A32 (2024)
Breu, C. A.; Peter, H.; Solanki, S. K.; Cameron, R.; De Moortel, I.: Non-thermal broadening of coronal lines in a 3D MHD loop model. Monthly Notices of the Royal Astronomical Society (2024)
Breu, C.; Peter, H.; Solanki, S. K.; Cameron, R.; De Moortel, I.: Non-thermal broadening of coronal lines in a 3D MHD loop model. Monthly Notices of the Royal Astronomical Society 530, pp. 2361 - 2377 (2024)
Cloutier, S.; Cameron, R. H.; Gizon, L.: The mean solar butterfly diagram and poloidal field generation rate at the surface of the Sun. Astronomy and Astrophysics 691, p. A9 (2024)
Finley, A. J.; Brun, A. S.; Strugarek, A.; Cameron, R.: How well does surface magnetism represent deep Sun-like star dynamo action? Astronomy and Astrophysics 684, p. A92 (2024)
Bekki, Y.; Cameron, R. H.: Three-dimensional non-kinematic simulation of the post-emergence evolution of bipolar magnetic regions and the Babcock-Leighton dynamo of the Sun. Astronomy and Astrophysics 670, p. A101 (2023)
Weisshaar, E.; Cameron, R. H.; Schüssler, M.: No evidence for synchronization of the solar cycle by a "clock". Astronomy and Astrophysics 671, p. A87 (2023)
Baumgartner, C.; Birch, A. C.; Schunker, H.; Cameron, R. H.; Gizon, L.: Impact of spatially correlated fluctuations in sunspots on metrics related to magnetic twist. Astronomy and Astrophysics 664, p. A183 (2022)
Bekki, Y.; Cameron, R. H.; Gizon, L.: Theory of solar oscillations in the inertial frequency range: Amplitudes of equatorial modes from a nonlinear rotating convection simulation. Astronomy and Astrophysics 666, p. A135 (2022)
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).