Moyano, F. D.; Eggenberger, P.; Mosser, B.; Spada, F.: Asteroseismology of evolved stars to constrain the internal transport of angular momentum. VI. Testing a parametric formulation for the azimuthal magneto-rotational instability. Astronomy and Astrophysics 673, p. A110 (2023)
Spada, F.; Demarque, P.; Kupka, F.: Stellar evolution models with entropy-calibrated mixing-length parameter: application to red giants. Monthly Notices of the Royal Astronomical Society 504 (3), pp. 3128 - 3138 (2021)
Christensen-Dalsgaard, J.; Silva Aguirre, V.; Cassisi, S.; Miller Bertolami, M.; Serenelli, A.; Stello, D.; Weiss, A.; Angelou, G. C.; Jiang, C.; Lebreton, Y.et al.; Spada, F.; Bellinger, E. P.; Deheuvels, S.; Ouazzani, R. M.; Pietrinferni, A.; Mosumgaard, J. R.; Townsend, R. H. D.; Battich, T.; Bossini, D.; Constantino, T.; Eggenberger, P.; Hekker, S.; Mazumdar, A.; Miglio, A.; Nielsen, K. B.; Salaris, M.: The Aarhus red giants challenge: II. Stellar oscillations in the red giant branch phase. Astronomy and Astrophysics 635, A165 (2020)
Deheuvels, S.; Ballot, J.; Eggenberger, P.; Spada, F.; Noll, A.; den Hartogh, J. W.: Seismic evidence for near solid-body rotation in two Kepler subgiants and implications for angular momentum transport. Astronomy and Astrophysics 641, A117 (2020)
Gaulme, P.; Jackiewicz, J.; Spada, F.; Chojnowski, D.; Mosser, B.; McKeever, J.; Hedlund, A.; Vrard, M.; Benbakoura, M.; Damiani, C.: Active red giants: close binaries versus single rapid rotators. Astronomy and Astrophysics 639, A63 (2020)
Lehtinen, J.; Käpylä, M. J.; Olspert,, N.; Spada, F.: A Knee-Point in the Rotation-Activity Scaling of Late-type Stars with a Connection to Dynamo Transitions. (submitted)
Lehtinen, J.; Spada, F.; Käpylä, M. J.; Olspert, N.; Käpylä, P. J.: Common dynamo scaling in slowly rotating young and evolved stars. Nature astronomy 4, pp. 658 - 662 (2020)
Silva Aguirre, V.; Christensen-Dalsgaard, J.; Cassisi, S.; Miller Bertolami, M.; Serenelli, A.; Stello, D.; Weiss, A.; Angelou, G. C.; Jiang, C.; Lebreton, Y.et al.; Spada, F.; Bellinger, E. P.; Deheuvels, S.; Ouazzani, R. M.; Pietrinferni, A.; Mosumgaard, J. R.; Townsend, R. H. D.; Battich, T.; Bossini, D.; Constantino, T.; Eggenberger, P.; Hekker, S.; Mazumdar, A.; Miglio, A.; Nielsen, K. B.; Salaris, M.: The Aarhus red giants challenge: I. Stellar structures in the red giant branch phase. Astronomy and Astrophysics 635, A164 (2020)
Spada, F.; Lanzafame, A. C.: Competing effect of wind braking and interior coupling in the rotational evolution of solar-like stars. Astronomy and Astrophysics 636, A76 (2020)
Eggenberger, P.; Deheuvels, S.; Miglio, A.; Ekström, S.; Georgy, C.; Meynet, G.; Lagarde, N.; Salmon, S.; Buldgen, G.; Montalbán, J.et al.; Spada, F.; Ballot, J.: Asteroseismology of evolved stars to constrain the internal transport of angular momentum: I. Efficiency of transport during the subgiant phase. Astronomy and Astrophysics 621, A66 (2019)
Lanzafame, A. C.; Distefano, E.; Barnes, S. A.; Spada, F.: Evidence of New Magnetic Transitions in Late-type Dwarfs from Gaia DR2. The Astrophysical Journal 877 (2), 157 (2019)
Spada, F.; Demarque, P.: Testing the entropy calibration of the radii of cool stars: models of α Centauri A and B. Monthly Notices of the Royal Astronomical Society 489 (4), pp. 4712 - 4720 (2019)
Spada, F.; Arlt, R.; Küker, M.; Sofia, S.: Solar radius and luminosity variations induced by the internal dynamo magnetic fields. Astronomische Nachrichten 339 (7-8), pp. 545 - 558 (2018)
Spada, F.; Demarque, P.; Basu, S.; Tanner, J. D.: Improved Calibration of the Radii of Cool Stars Based on 3D Simulations of Convection: Implications for the Solar Model. The Astrophysical Journal 869 (2), 135 (2018)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
For PhD students whose project is already funded and who are applying for admission to the IMPRS, or for applicants who want to bring their own funding and their own project idea to the IMPRS.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.