Borrero, J. M.; Kobel, P.: Inferring the magnetic field vector in the quiet Sun II. Interpreting results from the inversion of Stokes profiles. Astronomy and Astrophysics 547, A89 (2012)
Kobel, P.; Solanki, S. K.; Borrero, J. M.: The continuum intensity as a function of magnetic field II. Local magnetic flux and convective flows. Astronomy and Astrophysics 542, A96 (2012)
Borrero, J. M.; Kobel, P.: Inferring the magnetic field vector in the quiet Sun I. Photon noise and selection criteria. Astronomy and Astrophysics 527, A29 (2011)
Kobel, P.; Solanki, S. K.; Borrero, J. M.: The Continuum Intensity as a Fuction of Magnetic Field. I. Active Region and Quiet Sun Magnetic Elements. Astronomy and Astrophysics 531, A112 (2011)
Hirzberger, J.; Riethmüller, T.; Solanki, S. K.; Kobel, P.: Multi-Channel Observations of a Solar Flare. In: Solar Polarization 5: In Honor of Jan Stenflo, pp. 125 - 130 (Eds. Berdyugina, S. V.; Nagendra, K. N.; Ramelli, R.). (2009)
Kobel, P.; Hirzberger, J.; Zakharov, V.; Gandorfer, A.; Solanki, S. K.: Center to Limb Distribution of Bright Points and Faculae: First Results of an Automated Detection Algorithm. In: Solar Polarization 5: In Honor of Jan Stenflo, pp. 211 - 214 (Eds. Berdyugina, S. V.; Nagendra, K. N.; Ramelli, R.). (2009)
Kobel, P.: Center-to-limb investigations of solar photospheric magnetic features at high spatial resolution. Dissertation, Georg-August-Universität Göttingen (2010)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
For PhD students whose project is already funded and who are applying for admission to the IMPRS, or for applicants who want to bring their own funding and their own project idea to the IMPRS.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.