Jiang, J. H.; Wang, B.; Goya, K.; Hocke, K.; Eckermann, S. D.; Ma, J.; Wu, D. L.; Read, W. G.: Geographical distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses. Journal Geophysical Research 109 (D3), D03111 (2004)
Wang, D. Y.; Stiller, G. P.; von Clarmann, T.; Fischer, H.; Lopez-Puertas, M.; Funke, B.; Glatthor, N.; Grabowski, U.; Höpfner, M.; Kellmann, S.et al.; Kiefer, M.; Linden, A.; Tsidu, G. M.; Milz, M.; Steck, T.; Jiang, J. H.; Ao, C. O.; Manney, G.; Hocke, K.; Wu, D. L.; Romans, L. J.; Wickert, J.; Schmidt, T.: Cross-validation of MIPAS/ENVISAT and GPS-RO/CHAMP temperature profiles. Journal Geophysical Research 109 (D19), D19311 (2004)
Hocke, K.; Schlegel, K.; Kirchengast, G.: Phases and amplitudes of TIDs in the high latitude F-region observed by EISCAT. Journal of Atmospheric and Terrestrial Physics 58, pp. 245 - 255 (1996)
Kirchengast, G.; Hocke, K.; Schlegel, K.: The gravity wave-TID relationship: insight via theoretical model-EISCAT data comparison. Journal of Atmospheric and Terrestrial Physics 58, pp. 233 - 243 (1996)
Kirchengast, G.; Leitinger, R.; Schlegel, K.; Hocke, K.: Modellsimulationen zur Interpretation von TIDs in hohen Breiten. Kleinheubacher Berichte 36, pp. 399 - 408 (1993)
Kirchengast, G.; Hocke, K.; Wuttke, K.; Schlegel, K.: Der Schwerewellen-TID Zusammenhang - Ein ``Lehrstück'' der Natur zur Physik der Thermosphären-Ionosphären Wechselwirkung. In: Kleinheubacher Berichte, pp. 429 - 438. (1994)
Hocke, K.: Untersuchung des Phasen- und Amplitudenverhaltens von Travelling Ionospheric Disturbances mit Hilfe von EISCAT-Daten. Dissertation, Georg-August-Universität Göttingen (1994)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
For PhD students whose project is already funded and who are applying for admission to the IMPRS, or for applicants who want to bring their own funding and their own project idea to the IMPRS.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.