Vasyliūnas, V. M.: Magnetosphere: From Plasma Observations to Reconnection Theory. Journal of Geophysical Research: Space Physics 125 (9), e2020JA027865 (2020)
Lopez, R. E.; Gonzalez, W. D.; Vasyliūnas, V. M.; Richardson, I. G.; Cid, C.; Echer, E.; Reeves, G. D.; Brandt, P. C.: Decrease in SYM-H during a storm main phase without evidence of a ring current injection. Journal of Atmospheric and Solar-Terrestrial Physics 134, pp. 118 - 129 (2015)
Song, P.; Vasyliūnas, V. M.: Effect of horizontally inhomogeneous heating on flow and magnetic field in the chromosphere of the Sun. Astrophys. J. Lett. 796, L23 (2014)
Tu, J.; Song, P.; Vasyliūnas, V. M.: Inductive-dynamic magnetosphere-ionosphere coupling via MHD waves. J. Geophys. Res. Space Phys. 119, pp. 530 - 547 (2014)
Song, P.; Vasyliūnas, V. M.; Zhou, X.-Z.: Magnetosphere-ionosphere/thermosphere coupling: Self-consistent solutions for a one-dimensional stratified ionosphere in three-fluid theory. Journal Geophysical Research 114, A08213 (2009)
Aschwanden, M. J.; Burlaga, L. F.; Kaiser, M. L.; Ng, C. K.; Reames, D. V.; Reiner, M. J.; Gombosi, T. I.; Lugaz, N.; Manchester, W.; Roussev, I. I.et al.; Zurbuchen, T. H.; Farrugia, C. J.; Galvin, A. B.; Lee, M. A.; Linker, J. A.; Mikić, Z.; Riley, P.; Alexander, D.; Sandman, A. W.; Cook, J. W.; Howard, R. A.; Odstrčil, D.; Pizzo, V. J.; Kóta, J.; Liewer, P. C.; Luhmann, J. G.; Inhester, B.; Schwenn, R. W.; Solanki, S. K.; Vasyliūnas, V. M.; Wiegelmann, T.; Blush, L.; Bochsler, P.; Cairns, I. H.; Robinson, P. A.; Bothmer, V.; Kecskemety, K.; Llebaria, A.; Maksimovic, M.; Scholer, M.; Wimmer-Schweingruber, R. F.: Theoretical Modeling for the Stereo Mission. Space Science Reviews 136, pp. 565 - 604 (2008)
Tsurutani, B. T.; Verkhoglyadova, O. P.; Mannucci, A. J.; Saito, A.; Araki, T.; Yumoto, K.; Tsuda, T.; Abdu, M. A.; Sobral, J. H. A.; Gonzalez, W. D.et al.; McCreadie, H.; Lakhina, G. S.; Vasyliūnas, V. M.: Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30-31 October 2003. Journal Geophysical Research 113, A05311 (2008)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
For PhD students whose project is already funded and who are applying for admission to the IMPRS, or for applicants who want to bring their own funding and their own project idea to the IMPRS.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.