Korokhin, V.; Surkov, Y.; Mall, U.; Kaydash, V.; Velichko, S.; Velikodsky, Y.; Shalygina, O.: Applying machine learning to a nonlinear spectral mixing model for mapping lunar soils composition using CHANDRAYAAN-1 M3 data. Planetary and Space Science 244, p. 105870 (2024)
Korokhin, V.; Surkov, Y.; Mall, U.; Kaydash, V.; Velichko, S.; Velikodsky, Y.; Shalygina, O.: Applying machine learning to a nonlinear spectral mixing model for mapping lunar soils composition using CHANDRAYAAN-1 M3 data. Planetary and Space Science 244, p. 105870 (2024)
Shalygina, O.; Shalygin, E. V.; Ignatiev, N. I.; Petrova, E. V.: Comment on "Long-term Variations of Venus's 365 nm Albedo Observed by Venus Express, Akatsuki, MESSENGER, and the Hubble SpaceTelescope" by Lee et al. (2019, AJ, 158, 126). Research notes of the AAS 3 (11), 168 (2020)
Markiewicz, W. J.; Petrova, E.; Shalygina, O.: Aerosol properties in the upper clouds of Venus from glory observations by the Venus Monitoring Camera (Venus Express mission). Icarus 299, pp. 272 - 293 (2018)
Petrova, E. V.; Shalygina, O. S.; Markiewicz, W. J.: UV contrasts and microphysical properties of the upper clouds of Venus from the UV and NIR VMC/VEx images. Icarus 260, pp. 190 - 204 (2015)
Petrova, E. V.; Shalygina, O. S.; Markiewicz, W. J.: The VMC/VEx photometry at small phase angles: Glory and the physical properties of particles in the upper cloud layer of Venus. Planetary and Space Science 113, pp. 120 - 134 (2015)
Shalygina, O. S.; Petrova, E. V.; Markiewicz, W. J.; Ignatiev, N. I.; Shalygin, E. V.: Optical properties of the Venus upper clouds from the data obtained by Venus Monitoring Camera on-board the Venus Express. Planetary and Space Science 113, pp. 135 - 158 (2015)
Markiewicz, W. J.; Petrova, E.; Shalygina, O.; Almeida, M.; Titov, D. V.; Limaye, S. S.; Ignatiev, N.; Roatsch, T.; Matz, K.-D.: Glory on Venus cloud tops and the unknown UV absorber. Icarus 234, pp. 200 - 203 (2014)
Petrova, E. V.; Markiewicz, W. J.; Shalygina, O. S.: The latitude gradient of droplet sizes of the upper Venus clouds at 35-60S from the VMC/VEx observations. 40th COSPAR Scientific Assembly, Moscow, Russia (2014)
First Light! The spectro-polarimeter of the world's largest solar telescope in Hawaii looks at the Sun for the first time. The instrument was developed in Germany.
Dr. Theodosios Chatzistergos receives award by the European Space Weather and Space Climate Association for his research findings on the historical activity of the Sun.
The Zdenĕk Švetska Senior Prize of the Solar Physics Division of the European Physical Society (EPS) recognizes Solanki’s pioneering contributions to solar research.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
Application deadline 1 October 2024. PhD projects in planetary science, solar and stellar physics, solar magnetism, heliophysics, helioseismology, asteroseismology, ...