Schou, J.: Using birefringent elements and imaging Michelsons for the calibration of high-precision planet-finding spectrographs. Astronomy and Astrophysics 662, p. A119 (2022)
Proxauf, B.; Gizon, L.; Löptien, B.; Schou, J.; Birch, A.; Bogart, R. S.: Exploring the latitude and depth dependence of solar Rossby waves using ring-diagram analysis. Astronomy and Astrophysics 634, A44 (2020)
Schou, J.; Birch, A.: Estimating the nonstructural component of the helioseismic surface term using hydrodynamic simulations. Astronomy and Astrophysics 638, A51 (2020)
Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.: On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory. Solar Physics 293, 45 (2018)
Howe, R.; Hill, F.; Komm, R.; Chaplin, W. J.; Elsworth, Y.; Davies, G. R.; Schou, J.; Thompson, M. J.: Signatures of Solar Cycle 25 in Subsurface Zonal Flows. The Astrophysical Journal Letters 862 (1), L5 (2018)
Larson, T.; Schou, J.: Global-Mode Analysis of Full-Disk Data from the Michelson Doppler Imager and the Helioseismic and Magnetic Imager. Solar Physics 293, 29 (2018)
Liang, Z.-C.; Birch, A. C.; Duvall, T.; Gizon, L.; Schou, J.: Comparison of acoustic travel-time measurements of solar meridional circulation from SDO/HMI and SOHO/MDI. Astronomy and Astrophysics 601, A46 (2017)
Löptien, B.; Birch, A. C.; Duvall Jr., T. L.; Gizon, L.; Proxauf, B.; Schou, J.: Measuring solar active region inflows with local correlation tracking of granulation. Astronomy and Astrophysics 606, A28 (2017)
Nielsen, M. B.; Schunker, H.; Gizon, L.; Schou, J.; Ball, W.: Limits on radial differential rotation in Sun-like stars from parametric fits to oscillation power spectra. Astronomy and Astrophysics 603, A6, pp. 1 - 8 (2017)
Couvidat, S.; Schou, J.; Hoeksema, J. T.; Bogart, R. S.; Bush, R. I.; Duvall, T. L.; Liu, Y.; Norton, A. A.; Scherrer, P. H.: Observables processing for the Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory. Solar Physics 291, pp. 1887 - 1938 (2016)
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.