Nagashima, K.; Sekii, T.; Gizon, L.; Birch, A. C.: Statistics of the two-point cross-covariance function of solar oscillations. Astronomy and Astrophysics 593, A41 (2016)
Burston, R.; Gizon, L.; Birch, A. C.: Interpretation of Helioseismic Travel Times - Sensitivity to Sound Speed, Pressure, Density, and Flows. Space Science Reviews 196, pp. 201 - 219 (2015)
Langfellner, J.; Gizon, L.; Birch, A. C.: Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking. Astronomy and Astrophysics 581, A67 (2015)
Langfellner, J.; Gizon, L.; Birch, A. C.: Anisotropy of the solar network magnetic field around the average supergranule. Astronomy and Astrophysics 579, L7 (2015)
Barnes, G.; Birch, A. C.; Leka, K. D.; Braun, D. C.: Helioseismology of Pre-emerging Active Regions. III. Statistical Analysis. Astrophysical Journal 786, 19 (2014)
Felipe, T.; Crouch, A. D.; Birch, A. C.: Evaluation of the Capability of Local Helioseismology to Discern between Monolithic and Spaghetti Sunspot Models. Astrophysical Journal 788, 136 (2014)
Fournier, D.; Gizon, L.; Hohage, T.; Birch, A.: Generalization of the noise model for time‐distance helioseismology. Astronomy and Astrophysics 567, A137 (2014)
Langfellner, J.; Gizon, L.; Birch, A. C.: Time-distance helioseismology: A new averaging scheme for measuring flow vorticity. Astronomy and Astrophysics 570, A90 (2014)
Papini, E.; Gizon, L.; Birch, A. C.: Propagating Linear Waves in Convectively Unstable Stellar Models: a Perturbative Approach. Solar Physics 289, pp. 1919 - 1929 (2014)
Birch, A. C.; Braun, D. C.; Leka, K. D.; Barnes, G.; Javornik, B.: Helioseismology of Pre-emerging Active Regions. II. Average Emergence Properties. Astrophysical Journal 762 (2), 131 (2013)
Dombroski, D. E.; Birch, A. C.; Braun, D. C.; Hanasoge, S. M.: Testing Helioseismic-Holography Inversions for Supergranular Flows Using Synthetic Data. Solar Physics 282 (2), pp. 361 - 378 (2013)
Various application review phases in 2025. PhD projects in cosmochemistry, planetary science, solar and stellar physics, helioseismology, asteroseismology, ...
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.