Lorek, S.; Lacerda, P.; Blum, J.: Local growth of dust- and ice-mixed aggregates as cometary building blocks in the solar nebula. Astronomy and Astrophysics 611, A18 (2018)
Lorek, S.; Gundlach, B.; Lacerda, P.; Blum, J.: Comet formation in collapsing pebble clouds. What cometary bulk density implies for the cloud mass and dust-to-ice ratio. Astronomy and Astrophysics 587, A128 (2016)
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).