Borrero, J. M.; Martinez-Pillet, V.; Schlichenmaier, R.; Solanki, S. K.; Bonet, J. A.; del Toro Iniesta, J. C.; Schmidt, W.; Barthol, P.; Gandorfer, A.; Domingo, V.et al.; Knoelker, M.: Supersonic Magnetic Upflows in Granular Cells Observed with SUNRISE/IMaX. Astrophysical Journal 723 (2), pp. L144 - L148 (2010)
Borrero, J. M.; Rempel, M.; Solanki, S. K.: Spectropolarimetric analysis of 3D MHD sunspot simulations. Astron. Nachrichten 331 (6), pp. 567 - 569 (2010)
Borrero, J. M.: The structure of sunspot penumbrae - IV. MHS equilibrium for penumbral flux tubes and the origin of dark core penumbral filaments and penumbral grains. Astronomy and Astrophysics 471, pp. 967 - 975 (2007)
Borrero, J. M.; Solanki, S. K.; Lagg, A.; Socas-Navarro, H.; Lites, B.: On the fine structure of sunspot penumbrae: III. The vertical extension of penumbral filaments. Astronomy and Astrophysics 450, pp. 383 - 393 (2006)
Borrero, J. M.; Bellot Rubio, L. R.; Barklem, P. S.; Del Toro Iniesta, J. C.: Accurate atomic parameters for near-infrared spectral lines. Astronomy and Astrophysics 404, p. 749 (2003)
Bellot Rubio, L. R.; Borrero, J. M.: Iron abundance in the solar photosphere. Application of a two-component model atmosphere. Astronomy and Astrophysics 391 (3), pp. 331 - 337 (2002)
Borrero, J. M.; Rubio, L. R. B.: A two-component model of the solar photosphere from the inversion of spectral lines. Astronomy and Astrophysics 385 (3), pp. 1056 - 1072 (2002)
Borrero, J. M.; Lagg, A.; Solanki, S. K.; Frutiger, C.; Collados, M.; Bellot Rubio, L. R.: Modeling the Fine Structure of a Sunspot Penumbra through the Inversion of Stokes Profiles. Astronomical Society of the Pacific, pp. 235 - 242 (2003)
Borrero, J. M.; Lagg, A.; Solanki, S. K.; Frutiger, C.; Collados, M.; Bellot Rubio, L. R.: Modeling the Fine Structure of a Sunspot Penumbra through the Inversion of Stokes Profiles. In: Current Theoretical Models and Future High Resolution Solar Observations: Preparing for ATST, p. 235 (Eds. Pevtsov, A. A.; Uitenbroek, H.). (2003)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
For PhD students whose project is already funded and who are applying for admission to the IMPRS, or for applicants who want to bring their own funding and their own project idea to the IMPRS.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.