Nagy, A. F.; Winterhalter, D.; Sauer, K.; Cravens, T. E.; Brecht, S.; Mazelle, C.; Crider, D.; Kallio, E.; Zakharov, A.; Dubinin, E.et al.; Verigin, M.; Kotova, G.; Axford, W. I.; Bertucci, C.; Trotignon, J. G.: The plasma environment of Mars. Space Science Reviews 111 (1-2), pp. 33 - 114 (2004)
Florinski, V.; Zank, G. P.; Axford, W. I.: The solar system in a dense interstellar cloud: Implications for cosmic-ray fluxes at Earth and 10Be records. Geophysical Research Letters 30 (23), 2206 (2003)
Trotignon, J. G.; Parrot, M.; Cerisier, J. C.; Menvielle, M.; Axford, W. I.; Pätzold, M.; Warnant, R.; Wernik, A. W.: The plasma environment of Mars: from the shocked solar wind down to the ionosphere. Planetary and Space Science 48, pp. 1181 - 1191 (2000)
Axford, W. I.; McKenzie, J. F.; Sukhorukova, G. V.; Banaszkiewicz, M.; Czechowski, A.; Ratkiewicz, R.: Acceleration of the high speed solar wind in coronal holes. Space Science Reviews 87, pp. 25 - 41 (1999)
Krymskii, A. M.; Breus, T. K.; Axford, W. I.: Sources of heavy ions in the Venusian magnetosheath and their role in solar wind loading processes. Cosmic Research 37 (4), pp. 360 - 368 (1999)
Lieu, R.; Ip, W.-H.; Axford, W. I.; Bonamente, M.: Nonthermal origin of the EUV and soft X-rays from the Coma Cluster: Cosmic rays in equipartition with the thermal medium. Astrophys. J. Let. 510, pp. L25 - L28 (1999)
McKenzie, J. F.; Sukhorukova, G. V.; Axford, W. I.: The temperature and density structure in the closed field regions of the solar corona. Astronomy and Astrophysics 350, pp. 1035 - 1039 (1999)
Shukla, P. K.; Bingham, R.; McKenzie, J. F.; Axford, W. I.: Solar coronal heating by high-frequency dispersive Alfvén waves. Solar Physics 186, pp. 61 - 66 (1999)
Aellig, M. R.; Grünwaldt, H.; Bochsler, P.; Wurz, P.; Hefti, S.; Kallenbach, R.; Ipavich, F. M.; Axford, W. I.; Balsiger, H.; Bürgi, A.et al.; Coplan, M. A.; Galvin, A. B.; Geiss, J.; Gliem, F.; Gloeckler, G.; Hilchenbach, M.; Hovestadt, D.; Hsieh, K. C.; Klecker, B.; Lee, M. A.; Livi, S.; Managadze, G. G.; Marsch, E.; Möbius, E.; Neugebauer, M.; Reiche, K.-U.; Scholer, M.; Verigin, M. I.; Wilken, B.: Iron freeze-in temperatures measured by SOHO/CELIAS/CTOF. Journal Geophysical Research 103, pp. 17215 - 17222 (1998)
Axford, W. I.; Marsch, E.; Oraevsky, V. N.; Kuznetsov, V. D.; Breus, T. K.; Schwenn, R.; Ip, W.-H.; Ksanfomality, L. V.; Thomas, N.; Kogan, A.et al.; Utkin, V. F.; Uspensky, G. R.: Space mission for exploration of the Sun, Mercury and inner heliosphere (``InterHelios''). Advances in Space Research 21, pp. 275 - 289 (1998)
Breus, T. K.; Pimenov, K. Y.; Luhmann, J. G.; Krymskii, A. M.; Hagfors, T.; Axford, W. I.; Kliore, A. J.: Application of Viking radio occultation data to the future studies of the Martian ionosphere. Advances in Space Research 22, pp. 463 - 470 (1998)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
For PhD students whose project is already funded and who are applying for admission to the IMPRS, or for applicants who want to bring their own funding and their own project idea to the IMPRS.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.