Christensen, U. R.: Magnetic fields a window into the deep interiors of planets. Workshop on Structure and Dynamics of the interior of rocky planets. Structure and Dynamics of Earth-like Planets, Paris, France (2014)
Thor, R.; Kallenbach, R.; Christensen, U. R.; Gläser, P.; Stark, A.; Steinbrügge, G.; Oberst, J.: Simultaneous retrieval of the lunar solid body tide and topography from laser altimetry. AGU Fall Meeting , online (2020)
Thor, R.; Kallenbach, R.; Christensen, U. R.; Gläser, P.; Stark, A.; Steinbrügge, G.; Oberst, J.: Simultaneous retrieval of the lunar solid body tide and topography from laser altimetry. EGU General Assembly , online (2020)
Thor, R.; Kallenbach, R.; Christensen, U. R.; Stark, A.; Steinbrügge, G.; Ruscio, A. D.; Cappuccio, P.; Iess, L.; Hussmann, H.; Oberst, J.: Prospects for the Measurement of Mercury's Solid Body Tides with the BepiColombo Laser Altimeter. 51st Lunar and Planetary Science Conference, online (2020)
Christensen, U. R.: Deodynamo Models with a Stable Layer and Meterogeneous CMB Heat Flow. 16th Symposium of SEDI (Study of the Earth's Deep Interior), Edmonton, Canada (2018)
Thor, R.; Kallenbach, R.; Christensen, U. R.; Oberst, J.: Retrieval of h2 from laser altimetry. Workshop in Geology and Geophysics of the Solar System, Petnica, Serbia (2018)
Thor, R. N.; Kallenbach, R.; Christensen, U. R.; Oberst, J.: Retrieving the planetary h2 tidal Love number from laser altimetry data. 1st IUGG Symposium on Planetary Science, DLR Adlershof, Berlin, Germany (2017)
Thor, R. N.; Kallenbach, R.; Christensen, U. R.; Oberst, J.: Retrieving the planetary h2 tidal Love number from laser altimetry data. Rocks \& Stars II, Göttingen, Germany (2017)
Bossmann, A. B.; Wicht, J.; Gastine, T.; Christensen, U. R.: Magnetic field morphology of the ice giants linked to their internal structure. 5th Meeting of the DFG-SPP Planetary Magnetism, Nördlingen, Germany (2015)
Christensen, U. R.: Planetary Magnetic Fields and Dynamos. In: Oxford Research Encyclopedia: Planetary Science (Ed. Oxford University Press). Oxford Univ. Press, Oxford (2019)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
For PhD students whose project is already funded and who are applying for admission to the IMPRS, or for applicants who want to bring their own funding and their own project idea to the IMPRS.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.