Bekki, Y.: Numerical study of non-toroidal inertial modes with l = m + 1 radial vorticity in the Sun's convection zone. Astronomy and Astrophysics 682, p. A39 (2024)
Bekki, Y.: Numerical study of non-toroidal inertial modes with l = m + 1 radial vorticity in the Sun's convection zone. Astronomy and Astrophysics 682, p. A39 (2024)
Bekki, Y.; Cameron, R. H.; Gizon, L.: The Sun's differential rotation is controlled by high-latitude baroclinically unstable inertial modes. Science Advances 10, p. eadk5643 (2024)
Bekki, Y.; Cameron, R. H.; Gizon, L.: The Sun's differential rotation is controlled by high-latitude baroclinically unstable inertial modes. Science Advances 10, p. eadk5643 (2024)
Bekki, Y.; Cameron, R. H.: Three-dimensional non-kinematic simulation of the post-emergence evolution of bipolar magnetic regions and the Babcock-Leighton dynamo of the Sun. Astronomy and Astrophysics 670, p. A101 (2023)
Bekki, Y.; Cameron, R. H.; Gizon, L.: Theory of solar oscillations in the inertial frequency range: Amplitudes of equatorial modes from a nonlinear rotating convection simulation. Astronomy and Astrophysics 666, p. A135 (2022)
Bekki, Y.; Cameron, R. H.; Gizon, L.: Theory of solar oscillations in the inertial frequency range: Linear modes of the convection zone. Astronomy and Astrophysics 662, p. A16 (2022)
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
Application deadline 1 October 2024. PhD projects in planetary science, solar and stellar physics, solar magnetism, heliophysics, helioseismology, asteroseismology, ...