Smitha, H. N.; Holzreuter, R.; van Noort, M.; Solanki, S. K.: The influence of NLTE effects in Fe I lines on an inverted atmosphere: I. 6301 Å and 6302 Å lines formed in 1D NLTE. Astronomy and Astrophysics 633, A157 (2020)
Yadav, N.; Cameron, R. H.; Solanki, S. K.: Simulations Show that Vortex Flows Could Heat the Chromosphere in Solar Plage. Astrophysical Journal, Letters 894 (2), L17 (2020)
Yeo, K. L.; Solanki, S. K.; Krivova, N. A.: How faculae and network relate to sunspots, and the implications for solar and stellar brightness variations. Astronomy and Astrophysics 639, A139 (2020)
Yeo, K. L.; Solanki, S. K.; Krivova, N. A.: How faculae and network relate to sunspots, and the implications for solar and stellar brightness variations (Corrigendum). Astronomy and Astrophysics 642, C2 (2020)
Zhu, X.; Wiegelmann, T.; Solanki, S. K.: Magnetohydrostatic modeling of AR11768 based on a S UNRISE/IMaX vector magnetogram. Astronomy and Astrophysics 640, A103 (2020)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".