Rempel, M.: Thermal properties of magnetic flux tubes. II. Storage of flux in the solar overshoot region. Astronomy and Astrophysics 397, pp. 1097 - 1107 (2003)
Rempel, M.; Schüssler, M.; Toth, G.: Storage of magnetic flux at the bottom of the solar convection zone. Astronomy and Astrophysics 363, pp. 789 - 799 (2000)
Gizon, L.; Rempel, M.: Time-varying component of the solar meridional flow. In: Proceedings of SOHO 18 / GONG 2006 / HELAS I - Beyond the spherical Sun, 7-11 August 2006, Sheffield, UK (Ed. Fletcher, K.). ESA Publ. Div., Noordwijk, The Netherlands (2006)
Schüssler, M.; Rempel, M.: Structure of the magnetic field in the lower convection zone. In: Proc. SOHO 11 Symposium ``From Solar Min to Max: Half a Solar Cycle with SOHO'', pp. 499 - 506 (Ed. Wilson, A.). ESA Publ. Div., Noordwijk (2002)
Rempel, M.; Schüssler, M.: Intensification of a magnetic field in a stellar convection zone by conversion of potential energy. In: Magnetic Fields Across the Hertzsprung-Russell Diagram, pp. 165 - 168 (Eds. Mathys, G.; Solanki, S. K.; Wickramasinghe, D. T.). Astronomical Society of the Pacific, San Francisco, USA (2001)
Rempel, M.; Schüssler, M.; Moreno-Insertis, F.: Storage of a strong magnetic field below the solar convection zone. In: Cool Stars, Stellar Systems, and the Sun, pp. CD - 738 (Eds. López, G.; J., R.; Rebolo; R.; Osorio, Z. et al.). Astronomical Society of the Pacific, San Francisco (2001)
Rempel, M. D.: Struktur und Ursprung starker Magnetfelder am Boden der solaren Konvektionszone. Dissertation, Georg-August-Universität Göttingen (2001)
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.