Chitta, L. P.; van Noort, M.; Smitha, H. N.; Priest, E.R.; van der Voort, L.H.M.R.: Photospheric Hot Spots at Solar Coronal Loop Footpoints Revealed by Hyperspectral Imaging Observations. ASTROPHYSICAL JOURNAL (1) (2024)
Smitha, H. N.; Holzreuter, R.; van Noort, M.; Solanki, S. K.: The influence of NLTE effects in Fe I lines on an inverted atmosphere: II. 6301 Å and 6302 Å lines formed in 3D NLTE. Astronomy and Astrophysics 647, A46 (2021)
Smitha, H. N.; Holzreuter, R.; van Noort, M.; Solanki, S. K.: The influence of NLTE effects in Fe I lines on an inverted atmosphere: I. 6301 Å and 6302 Å lines formed in 1D NLTE. Astronomy and Astrophysics 633, A157 (2020)
Smitha, H. N.; Solanki, S. K.: Probing the photospheric magnetic fields with new spectral line pairs. Annual Meeting of the Astronomische Gesellschaft 2017 , Göttingen, Germany (2017)
Smitha, H. N.; Anusha, L. S.; Solanki, S. K.; Riethmueller, T. L.: Flux emergence rate in the quiet Sun from SUNRISE data. SOLARNET IV, The Physics of the Sun from the Interior to the Outer Atmosphere, Lanzarote, Spain (2017)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".