Anand, A.; Spitzer, F.; Hopp, T.; Windmill, R.; Kruttasch, P.; Burkhardt, C.; Dauphas, N.; Greenwood, R.; Hofmann, B.; Mezger, K.et al.; Kleine, T.: Isotopic evidence for a common parent body of IIG and IIAB iron meteorites. Geochimica et Cosmochimica Acta 382, pp. 118 - 127 (2024)
Hellmann, J. L.; Van Orman, J. A.; Kleine, T.: Hf-W isotope systematics of enstatite chondrites: Parent body chronology and origin of Hf-W fractionations among chondritic meteorites. Earth and Planetary Science Letters 626, p. 118518 (2024)
Jansen, C. A.; Burkhardt, C.; Marrocchi, Y.; Schneider, J. M.; Wölfer, E.; Kleine, T.: Condensate evolution in the solar nebula inferred from combined Cr, Ti, and O isotope analyses of amoeboid olivine aggregates. Earth and Planetary Science Letters 627, p. 118567 (2024)
Mazza, S. E.; Gaschnig, R. M.; Rudnick, R. L.; Kleine, T.: Tungsten stable isotope composition of the upper continental crust. Geochimica et Cosmochimica Acta 370, pp. 161 - 172 (2024)
Pape, J.; Zhang, B.; Spitzer, F.; Rubin, A. E.; Kleine, T.: Isotopic constraints on genetic relationships among group IIIF iron meteorites, Fitzwater Pass, and the Zinder pallasite. Meteoritics and Planetary Science 59, pp. 778 - 788 (2024)
Archer, G. J.; Budde, G.; Worsham, E. A.; Stracke, A.; Jackson, M. G.; Kleine, T.: Origin of 182W Anomalies in Ocean Island Basalts. Geochemistry, Geophysics, Geosystems 24, p. e2022GC010688 (2023)
Budde, G.; Tissot, F. L.H.; Kleine, T.; Marquez, R. T.: Spurious molybdenum isotope anomalies resulting from non-exponential mass fractionation. Geochemistry (2023)
Pape, J.; Zhang, B.; Spitzer, F.; Rubin, A. E.; Kleine, T.: Isotopic constraints on genetic relationships among group IIIF iron meteorites, Fitzwater Pass, and the Zinder pallasite. Meteoritics & Planetary Science, pp. 1 - 11 (2023)
Schneider, J. M.; Burkhardt, C.; Kleine, T.: Distribution of s-, r-, and p-process Nuclides in the Early Solar System Inferred from Sr Isotope Anomalies in Meteorites. The Astrophysical Journal 952, p. L25 (2023)
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The MPS instruments on board ESA’s JUICE spacecraft have successfully completed their commissioning in space - and delivered their first observational data.
A collision nearly 30 years ago permanently changed Jupiter's atmospheric chemistry; the aftermath is still helping to better understand the gas giant.
The launch was successful; the ESA’s space probe JUICE is now on its way to the Jupiter system. There, it will primarily study the gas giant's icy moons.
ESA's space probe is on the move: First it heads for the launch site in Kourou - and in April it will begin its long journey to Jupiter and its icy moons.