Attie, R.; Innes, D. E.; Solanki, S. K.; Glassmeier, K.-H.: Relationship between supergranulation flows, magnetic cancellation and network flares. Astronomy and Astrophysics 596, A15 (2016)
Yousefzadeh, M.; Safari, H.; Attie, R.; Alipour, N.: Motion and Magnetic Flux Changes of Coronal Bright Points Relative to Supergranular Cell Boundaries. Solar Physics 291, pp. 29 - 39 (2015)
Attie, R.; Innes, D. E.; Potts, H. E.: Evidence of photospheric vortex flows at supergranular junctions observed by FG/SOT (Hinode). Astronomy and Astrophysics 493 (2), pp. L13 - L16 (2009)
Innes, D. E.; Genetelli, A.; Attie, R.; Potts, H. E.: Quiet Sun mini-coronal mass ejections activated by supergranular flows. Astronomy and Astrophysics 495, p. 319 (2009)
Innes, D. E.; Attie, R.; Hara, H.; Madjarska, M. S.: EIS/ Hinode Observations of Doppler Flow Seen through the 40-Arcsec Wide-Slit. Solar Physics 252, pp. 283 - 292 (2008)
Attie, R.; Innes, D. E.: Explosive Event in the Quiet Sun Seen by XRT-EIS and SUMER. In: First Results From Hinode, p. 155 (Eds. Matthews, S. A.; Davis, J. M.; Harra, L. K.). Astronomical Society of the Pacific, San Francisco (2008)
Attie, R.: The relationship between supergranulation flows, magnetic field evolution and network flares. Dissertation, Tech. Univ. Braunschweig, Braunschweig, Braunschweig (2015)
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The MPS instruments on board ESA’s JUICE spacecraft have successfully completed their commissioning in space - and delivered their first observational data.
A collision nearly 30 years ago permanently changed Jupiter's atmospheric chemistry; the aftermath is still helping to better understand the gas giant.
The launch was successful; the ESA’s space probe JUICE is now on its way to the Jupiter system. There, it will primarily study the gas giant's icy moons.
ESA's space probe is on the move: First it heads for the launch site in Kourou - and in April it will begin its long journey to Jupiter and its icy moons.