Anand, A.; Spitzer, F.; Hopp, T.; Windmill, R.; Kruttasch, P.; Burkhardt, C.; Dauphas, N.; Greenwood, R.; Hofmann, B.; Mezger, K.et al.; Kleine, T.: Isotopic evidence for a common parent body of IIG and IIAB iron meteorites. Geochimica et Cosmochimica Acta 382, pp. 118 - 127 (2024)
Hellmann, J. L.; Van Orman, J. A.; Kleine, T.: Hf-W isotope systematics of enstatite chondrites: Parent body chronology and origin of Hf-W fractionations among chondritic meteorites. Earth and Planetary Science Letters 626, p. 118518 (2024)
Jansen, C. A.; Burkhardt, C.; Marrocchi, Y.; Schneider, J. M.; Wölfer, E.; Kleine, T.: Condensate evolution in the solar nebula inferred from combined Cr, Ti, and O isotope analyses of amoeboid olivine aggregates. Earth and Planetary Science Letters 627, p. 118567 (2024)
Mazza, S. E.; Gaschnig, R. M.; Rudnick, R. L.; Kleine, T.: Tungsten stable isotope composition of the upper continental crust. Geochimica et Cosmochimica Acta 370, pp. 161 - 172 (2024)
Pape, J.; Zhang, B.; Spitzer, F.; Rubin, A. E.; Kleine, T.: Isotopic constraints on genetic relationships among group IIIF iron meteorites, Fitzwater Pass, and the Zinder pallasite. Meteoritics and Planetary Science 59, pp. 778 - 788 (2024)
Archer, G. J.; Budde, G.; Worsham, E. A.; Stracke, A.; Jackson, M. G.; Kleine, T.: Origin of 182W Anomalies in Ocean Island Basalts. Geochemistry, Geophysics, Geosystems 24, p. e2022GC010688 (2023)
Budde, G.; Tissot, F. L.H.; Kleine, T.; Marquez, R. T.: Spurious molybdenum isotope anomalies resulting from non-exponential mass fractionation. Geochemistry (2023)
Pape, J.; Zhang, B.; Spitzer, F.; Rubin, A. E.; Kleine, T.: Isotopic constraints on genetic relationships among group IIIF iron meteorites, Fitzwater Pass, and the Zinder pallasite. Meteoritics & Planetary Science, pp. 1 - 11 (2023)
Schneider, J. M.; Burkhardt, C.; Kleine, T.: Distribution of s-, r-, and p-process Nuclides in the Early Solar System Inferred from Sr Isotope Anomalies in Meteorites. The Astrophysical Journal 952, p. L25 (2023)
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
Data from NASA's Dawn mission, analyzed for the first time, suggest that brine rose from the depths and organic compounds were deposited in Urvara crater.