Gizon, L.; Barucq, H.; Duruflé, M.; Hanson, C. S.; Leguèbe, M.; Birch, A. C.; Chabassier, J.; Fournier, D.; Hohage, T.; Papini, E.: Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows. Astronomy and Astrophysics 600, A35 (2017)
Del Zanna, L.; Landi, S.; Papini, E.; Pucci, F.; Velli, M.: The ideal tearing mode: theory and resistive MHD simulations. Journal of Physics: Conference Series 719, 012016 (2016)
Papini, E.; Gizon, L.; Birch, A. C.: Propagating Linear Waves in Convectively Unstable Stellar Models: a Perturbative Approach. Solar Physics 289, pp. 1919 - 1929 (2014)
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).