Solar and stellar magnetohydrodynamics

Solar and stellar magnetohydrodynamics

Magnetic fields are responsible for the restless activity of the Sun and other cool stars, i.e. the emergence and disappearance of dark spots, mass ejections and bursts of radiation connected with the so-called "flares". Solar activity can severly affect terrestrial infrastructure (e.g., breakdown of power grids, interruption of radio communication, radiation load on airplane passengers, disturbance or damage of satellite systems). It is therefore important to understand the physical processes underlying the generation of magnetic fields and their interaction with the plasma (electrically conducting gas) in the in the atmospheres of the Sun and other stars. Magnetic fields originate from induction processes driven by the convective motions which carry the energy generated by nuclar fusion towards the stellar surface. Our research addresses a variety of topics connected with solar and stellar magnetism, including

  • interaction of magnetic fields with radiative convection in the near-surface layers,
  • formation and structure of magnetized vortex flows,
  • generation of magnetic fields by a large-scale and small-scale self-excited dynamo processes,
  • structure and dynamics of sunspots and smaller concentrations of magnetic flux,
  • surface emergence of magnetic flux and formation of bipolar magnetic regions,
  • evolution of the solar surface field as a result of the emergence of magnetic flux and its transport by horizontal flow fields (meridional circulation, differential rotation, large-scale convection): reversals and build-up of polar fields,
  • large-scale convective patterns in the deep solar convection zone, their surface manifestations and effects on the magnetic field.

Our research mainly utilizes numerical simulations based on the equations of magnetohydrodynamics and radiative transfer. The simulation results are also used to calculate observable quantities (e.g., brightness maps, spectral line profiles, polarization signatures) in order to permit a direct comparison to observations. In this way, the simulations can be validated and, in turn, be used as a tool for the interpretation of observational results. While observations mostly provide information only from a thin layer in the photosphere, the simulations reveal the full three-dimensional structure of the underlying physical processes.

Other Interesting Articles

Go to Editor View