Fournier, D.; Hohage, T.; Preuss, J.; Gizon, L.: Learned infinite elements for helioseismology: Learning transparent boundary conditions for the solar atmosphere. Astronomy and Astrophysics 690, p. A86 (2024)
Müller, B.; Hohage, T.; Fournier, D.; Gizon, L.: Quantitative passive imaging by iterative holography: the example of helioseismic holography. Inverse Problems 40, p. 045016 (2024)
Müller, B.; Hohage, T.; Fournier, D.; Gizon, L.: Quantitative passive imaging by iterative holography: the example of helioseismic holography. Inverse Problems 40, p. 045016 (2024)
Halla, M.; Hohage, T.: On the Well-posedness of the Damped Time-harmonic Galbrun Equation and the Equations of Stellar Oscillations. SIAM journal on mathematical analysis 53 (4), pp. 4068 - 4095 (2021)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".