Karuppiah, S.; Dumbović, M.; Martinić, K.; Temmer, M.; Heinemann, S. G.; Vršnak, B.: Early Evolution of Earth-Directed Coronal Mass Ejections in the Vicinity of Coronal Holes. Solar Physics 299, p. 87 (2024)
Matković, F.; Brajša, R.; Temmer, M.; Heinemann, S. G.; Ludwig, H.-G.; Saar, S. H.; Selhorst, C. L.; Skokić, I.; Sudar, D.: Differences in physical properties of coronal bright points and their ALMA counterparts within and outside coronal holes. Astronomy and Astrophysics 670, p. A146 (2023)
Milošić, D.; Temmer, M.; Heinemann, S. G.; Podladchikova, T.; Veronig, A.; Vršnak, B.: Improvements to the Empirical Solar Wind Forecast (ESWF) model. Solar Physics 298, p. 45 (2023)
Hofmeister, S. J.; Asvestari, E.; Guo, J.; Heidrich-Meisner, V.; Heinemann, S. G.; Magdalenic, J.; Poedts, S.; Samara, E.; Temmer, M.; Vennerstrom, S.et al.; Veronig, A.; Vršnak, B.; Wimmer-Schweingruber, R.: How the area of solar coronal holes affects the properties of high-speed solar wind streams near Earth: An analytical model. Astronomy and Astrophysics 659, p. A190 (2022)
Inceoglu, F.; Shprits, Y. Y.; Heinemann, S. G.; Bianco, S.: Identification of Coronal Holes on AIA/SDO Images Using Unsupervised Machine Learning. The Astrophysical Journal 930, p. 118 (2022)
Samara, E.; Magdalenić, J.; Rodriguez, L.; Heinemann, S. G.; Georgoulis, M. K.; Hofmeister, S. J.; Poedts, S.: Influence of coronal hole morphology on the solar wind speed at Earth. Astronomy and Astrophysics 662, p. A68 (2022)
Wagner, A.; Asvestari, E.; Temmer, M.; Heinemann, S. G.; Pomoell, J.: Validation scheme for solar coronal models: Constraints from multi-perspective observations in EUV and white light. Astronomy and Astrophysics 657, p. A117 (2022)
Geyer, P.; Temmer, M.; Guo, J.; Heinemann, S. G.: Properties of stream interaction regions at Earth and Mars during the declining phase of SC 24. Astronomy and Astrophysics 649, A80 (2021)
Heinemann, S. G.; Temmer, M.; Hofmeister, S. J.; Stojakovic, A.; Gizon, L.; Yang, D.: How to Estimate the Far-Side Open Flux Using STEREO Coronal Holes. Solar Physics 296, 141 (2021)
Jarolim, R.; Veronig, A. M.; Hofmeister, S.; Heinemann, S. G.; Temmer, M.; Podladchikova, T.; Dissauer, K.: Multi-channel coronal hole detection with convolutional neural networks. Astronomy and Astrophysics 652, A13 (2021)
Zhang, J.; Temmer, M.; Gopalswamy, N.; Malandraki, O.; Nitta, N. V.; Patsourakos, S.; Shen, F.; Vrsnak, B.; Wang, Y.; Webb, D.et al.; Desai, M. I.; Dissauer, K.; Dresing, N.; Dumbovic, M.; Feng, X.; Heinemann, S. G.; Laurenza, M.; Lugaz, N.; Zhuang, B.: Earth-affecting solar transients: a review of progresses in solar cycle 24. Progress in Earth and Planetary Science 8 (1), 56 (2021)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".