Verscharen, D.: Schwach kompressive, hochfrequente Wellen im inhomogenen Multifluid-Plasma. Mitteilungen der Deutschen Geophysikalischen Gesellschaft e.V. 3, pp. 5 - 9 (2011)
Verscharen, D.; Marsch, E.: Compressive high-frequency waves riding on an Alfvén/ion-cyclotron wave in a multi-fluid plasma. Journal of Plasma Physics 77, pp. 693 - 707 (2011)
Fahr, H.-J.; Chashei, I. V.; Verscharen, D.: Injection to the pick-up ion regime from high energies and induced ion power-laws. Astronomy and Astrophysics 505, pp. 329 - 337 (2009)
Fahr, H.-J.; Verscharen, D.: Spectral intensities of Anomalous Cosmic Rays derived from the injection rate at the solar wind termination shock. Astrophysics and Space Sciences Transactions 5, pp. 21 - 30 (2009)
Verscharen, D.; Fahr, H.-J.: Solar wind proton reflection and injection to the ACR regime at the parallel termination shock. Astrophysics and Space Sciences Transactions 5, pp. 15 - 19 (2009)
Verscharen, D.: On convected wave structures and spectral transfer in space plasmas - applications to solar corona and solar wind. Dissertation, Technische Universität Braunschweig (2012)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".