Vasyliūnas, V. M.: Impossibility of calculating magnetic field change from current disruption. In: Proceedings of the Eighth International Conference on Substorms (ICS-8), pp. 315 - 318 (Eds. Syrjäsuo, M.; Donovan, E.). University of Calgary, Alberta, Canada (2007)
Zelenyi, L. M.; Galperin, Y. I.; Veselov, M. V.; Savin, S. P.; Büchner, J.; Nikutowski, B.; Kunitsyn, V. E.; Silin, I. V.; Vasyliūnas, V.; Woch, J.et al.; Sosnovets, E. N.; Pulinets, S. A.: Methods of small-scale multi-satellite measurements for project Roy. In: Cluster-II Workshop: Multiscale/Multipoint Plasma Measurements, pp. 249 - 256 (Ed. Harris, R. A.). ESA Publ. Div., Noordwijk (2000)
Büchner, J.; Nikutowski, B.; Vasyliūnas, V.; Woch, J.; Wiegelmann, T.; Axford, I.; Baumjohann, W.; Glassmeier, K.-H.; Auster, H.-U.; Fornacon, K.-H.et al.; Zelenyi, L. M.; Galperin, Y. I.; Savin, S. P.; Veselov, M. V.; Klimov, S. I.: SCHWARM - a swarm of small spacecraft to study plasma turbulence and magnetic field annihilation. In: Proc. 14th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Potsdam, Germany, 31st May - 3rd June 1999, pp. 615 - 620 (Ed. Kaldeich-Schürmann, B.). ESA Publ. Div., Noordwijk (1999)
Vasyliūnas, V. M.: Magnetosphere. In: The Upper Atmosphere: Data Analysis and Interpretation, pp. 782 - 789 (Eds. Dieminger, W.; Hartmann, G. K.; Leitinger, R.). Springer, Berlin (1996)
Vasyliūnas, V. M.: Time scale for magnetic field changes after substorm onset: Constraints from dimensional analysis. In: Physics of Space Plasmas (1995), Number 14, pp. 553 - 560 (Eds. Chang, T.; Jasperse, J. R.). MIT Center for Theoretical Geo/Cosmo Plasma Physics, Cambridge, Massachusetts (1996)
Potemra, T. A.; Pudovkin, M. I.; Smith, R. W.; Vasyliūnas, V. M.; Egeland, A.: Summary of the NATO Advanced Research Workshop on Physical Signatures of Magnetospheric Boundary Layer Processes. In: Physical Signatures of Magnetospheric Boundary Layer Processes, pp. 451 - 456 (Eds. Holtet, J. A.; Egeland, A.). Kluwer Acad. Publ., Dordrecht (1994)
Vasyliūnas, V. M.: Summary. In: Substorms 2, Proc. 2. Int. Conf. on Substorms, Fairbanks, pp. 403 - 405 (Eds. Kan, J. R.; Craven, J. D.; Akasofu, S.-I.). Univ. of Alaska, Fairbanks (1994)
Vasyliūnas, V. M.: Relation between global and local aspects of reconnection. In: Reconnection in Space Plasma, pp. 11 - 13 (Eds. Guyenne, T. D.; Hunt, J. J.). ESA Publ. Div., Noordwijk (1989)
Vasyliūnas, V. M.: Dimensionless parameters for classifying solar wind interactions. In: Plasma Astrophysics, pp. 31 - 35 (Eds. Guyenne, T. D.; Hunt, J. J.). ESA Publ. Div., Noordwijk (1989)
Vasyliūnas, V. M.: Large-scale models of the ionosphere/magnetosphere/solar wind system - MHD as a unifying principle. In: Modeling Magnetospheric Plasma, pp. 33 - 37 (Eds. Moore, T. E.; Waite Jr., J. H.). (1988)
Vasyliūnas, V. M.: Summary of conference. In: Unstable Current Systems and Plasma Instabilities in Astrophysics, pp. 529 - 536 (Eds. Kundu, M. R.; Holman, G. D.). D. Reidel Publishing Co., Dordrecht, Holland (1985)
Vasyliūnas, V. M.: Steady state aspects of magnetic field line merging. In: Magnetic Reconnection in Space and Laboratory Plasmas, pp. 25 - 31 (Eds. Jr., H.; W., E.). (1984)
Vasyliūnas, V. M.: Comparative magnetospheres. In: Solar-terrestrial physics, pp. 479 - 492 (Eds. Carovillano, R. L.; Forbes, J. M.). D. Reidel Publishing Co., Dordrecht, Holland (1983)
Vasyliūnas, V. M.: Magnetic field line merging: Basic concepts. In: Solar-terrestrial physics, pp. 255 - 260 (Eds. Carovillano, R. L.; Forbes, J. M.). D. Reidel Publishing Co., Dordrecht, Holland (1983)
Vasyliūnas, V. M.: Large-scale morphology of the magnetosphere. In: Solar-terrestrial physics, pp. 243 - 254 (Eds. Carovillano, R. L.; Forbes, J. M.). D. Reidel Publishing Co., Dordrecht, Holland (1983)
Vasyliūnas, V. M.: Interaction between the magnetospheric boundary layers and the ionosphere. In: Proceedings of magnetospheric boundary layers conference, pp. 387 - 393 (Ed. Battrick, B.). ESA Publ. Div., Noordwijk (1979)
Vasyliūnas, V. M.: Plasma transport out of the Io torus: What does the observed radial gradient of average flux tube content imply? Conference on Magnetospheres of the Outer Planets, Sendai, Japan (2019)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".