Pekkilä, J.; Väisälä, M. S.; Käpylä, M. J.; Käpylä, P. J.; Anjum, O.: Methods for compressible fluid simulation on GPUs using high-order finite differences. Computer Physics Communications 217, pp. 11 - 22 (2017)
Pelt, J.; Käpylä, M. J.; Olspert, N.: Method of frequency dependent correlations: investigating the variability of total solar irradiance. Astronomy and Astrophysics 600, A9 (2017)
Tanskanen, E.I.; Snekvik, K.; Slavin, J.A.; Pérez-Suárez, D.; Viljanen, A.; Goldstein, M.; Käpylä, M. J.; Hynönen, R.; Häkkinen, L.V.T.; Mursula, K.: Solar Cycle Occurrence of Alfvénic Fluctuations and Related Geo-Efficiency. Journal of Geophysical Research: Space Physics 122 (10), pp. 9848 - 9857 (2017)
Cole, E.; Brandenburg, A.; Käpylä, P. J.; Käpylä, M. J.: Robustness of oscillatory alpha-squared dynamos in spherical wedges. Astronomy and Astrophysics 593, A134 (2016)
Warnecke, J.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.: Influence of a coronal envelope as a free boundary to global convective dynamo simulations. Astronomy and Astrophysics 596, A115 (2016)
Olspert, N.; Käpylä, M. J.; Pelt, J.: Method for estimating cycle lengths from multidimensional time series: Test cases and application to a massive "in silico" dataset. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 3214 - 3223. 2016 IEEE International Conference on Big Data (Big Data) , Washington, DC, December 05, 2016 - December 08, 2016. (2016)
Viviani, M.; Käpylä, M. J.; Warnecke, J.; Käpylä, P. J.; Rheinhardt, M.; Brandenburg, A.: Solar-like stars' models at increasing rotation rates: magnetic field, velocity field and helicities. Solar Helicities in Theory and Observations: Implications for Space Weather and Dynamo Theory, Stockholm, Schweden (2019)
Käpylä, M. J.: The enigmatic activity branch of solar-like stars and what to do about it. Research seminar on electronics and nanoengineering, Aalto University, Aalto, Finland (2018)
Käpylä, M. J.: Computing helicity spectra from synoptic maps. Third working meeting on Use of Vector Synoptic Maps for Modeling, Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany (2018)
Käpylä, M. J.: The future of global magnetoconvection simulations. From space, solar and laboratory plasmas to plasma astrophysics, Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany (2018)
Käpylä, M. J.: State-of-art of MHD modeling solar cycle. IAUS 340: Long-term datasets for the understanding of solar and stellar magnetic cycles, Jaipur, India (2018)
Käpylä, M. J.: State-of-the-art modeling of the solar cycle. IAU Symposia 340: Long-term datasets for the understanding of solar and stellar magnetic cycles, Jaipur, India (2018)
Käpylä, M. J.: Long-term variations and irregularities in solar and stellar dynamos. 14th Potsdam Thinkshop: Stellar Magnetism: Challenges, Connections, and Prospects, Potsdam, Germany (2017)
Käpylä, M. J.; Käpylä, P. J.; Olspert, N.; Brandenburg, A.; Warnecke, J.; Gent, F. A.: Multiple dynamo modes as a mechanism for long-term solar activity variations. SOLARNET IV MEETING: The Physics of the Sun from the Interior to the Outer Atmosphere, Lanzarote, Spain (2017)
Käpylä, P. J.; Käpylä, M. J.; Rheinhardt, M.; Olspert, N.; Brandenburg, A.; Warnecke, J.; Lagg, A.; Arlt, R.: Stellar convection models with Kramers-type opacity law. Session 'Fundamental aspects of turbulent convection,' of the DPG-FrÜhjahrstagung, Dresden, Germany (2017)
Käpylä, P. J.; Käpylä, M. J.; Rheinhardt, M.; Olspert, N.; Brandenburg, A.; Warnecke, J.; Lagg, A.; Arlt, R.: Implications of extended subadiabtic layers for stellar dynamos. 2nd Conference on Natural Dynamos, Valtice, Czech Republic (2017)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".