Käpylä, M. J.; Käpylä, P. J.; Olpert, N.; Brandenburg, A.; Warnecke, J.; Karak, B. B.; Pelt, J.: Multiple dynamo modes as a mechanism for long-term solar activity variations. Astronomy and Astrophysics 589, A56 (2016)
Warnecke, J.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.: Influence of a coronal envelope as a free boundary to global convective dynamo simulations. Astronomy and Astrophysics 596, A115 (2016)
Warnecke, J.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.: On the cause of solar-like equatorward migration in global convective dynamo simulations. Astrophysical Journal 796, L12 (2014)
Losada, I. R.; Warnecke, J.; Glogowski, K.; Roth, M.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.: A new look at sunspot formation using theory and observations. In: Proceedings of the International Astronomical Union: Fine Structure and Dynamics of the Solar Atmosphere, Vol. 12, pp. 46 - 59. (2017)
Warnecke, J.: Understanding rotational dependence of stellar activity using MHD simulations of stellar dynamos. Turbulence & magnetic fields - from the early universe to late-type stars, Tuusula, Finland (2019)
Warnecke, J.: Dynamos and Helicities in Natural Systems. Solar Helicities in Theory and Observations: Implications for Space Weather and Dynamo Theory, Stockholm, Schweden (2019)
Viviani, M.; Käpylä, M. J.; Warnecke, J.; Käpylä, P. J.; Rheinhardt, M.; Brandenburg, A.: Solar-like stars' models at increasing rotation rates: magnetic field, velocity field and helicities. Solar Helicities in Theory and Observations: Implications for Space Weather and Dynamo Theory, Stockholm, Schweden (2019)
Warnecke, J.: Magnetic Helicity: The glue that connects dynamos and coronae of the Sun and stars. Solar Helicities in Theory and Observations: Implications for Space Weather and Dynamo Theory, Nordita, Stockholm, Sweden (2019)
Warnecke, J.: Influence of magnetic helicity on heating and X-ray emission from 3D Models of solar and stellar coronae. Max Planck Princeton Center Workshop, Tokyo, Japan (2019)
Warnecke, J.: Understanding rotational dependence of stellar activity using MHD simulations of stellar dynamos and stellar coronae. MHD Days and GdRI Dynamo Meeting, Dresden, Germany (2018)
Warnecke, J.: Open questions and the future of dynamo simulations. From space, solar and laboratory plasmas to plasma astrophysics, Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany (2018)
Warnecke, J.: Modeling solar and stellar activity – from the dynamo to the corona. Institute Colloquium, Leibniz-Institut für Astrophysik Potsdam (AIP), Göttingen, Germany (2018)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".