Anand, A.; Spitzer, F.; Hopp, T.; Windmill, R.; Kruttasch, P.; Burkhardt, C.; Dauphas, N.; Greenwood, R.; Hofmann, B.; Mezger, K.et al.; Kleine, T.: Isotopic evidence for a common parent body of IIG and IIAB iron meteorites. Geochimica et Cosmochimica Acta 382, pp. 118 - 127 (2024)
Jansen, C. A.; Burkhardt, C.; Marrocchi, Y.; Schneider, J. M.; Wölfer, E.; Kleine, T.: Condensate evolution in the solar nebula inferred from combined Cr, Ti, and O isotope analyses of amoeboid olivine aggregates. Earth and Planetary Science Letters 627, p. 118567 (2024)
Jansen, C. A.; Burkhardt, C.; Marrocchi, Y.; Schneider, J.M.; Wölfer, E.; Kleine, T.: Condensate evolution in the solar nebula inferred from combined Cr, Ti, and O isotope analyses of amoeboid olivine aggregates. Earth and Planetary Science Letters 627, p. 118567 (2024)
Schneider, J. M.; Burkhardt, C.; Kleine, T.: Distribution of s-, r-, and p-process Nuclides in the Early Solar System Inferred from Sr Isotope Anomalies in Meteorites. The Astrophysical Journal 952, p. L25 (2023)
Fridolin, S.; Burkhardt, C.; Pape, J.; Kleine, T.: Collisional mixing between inner and outer solar system planetesimals inferred from the Nedagolla iron meteorite. Meteoritics and Planetary Science 57, pp. 261 - 276 (2022)
Kruijer, T. S.; Burkhardt, C.; Borg, L. E.; Kleine, T.: Tungsten and molybdenum isotopic evidence for an impact origin of pallasites. Earth and Planetary Science Letters 584, p. 117440 (2022)
Render, J.; Brennecka, G. A.; Burkhardt, C.; Kleine, T.: Solar System evolution and terrestrial planet accretion determined by Zr isotopic signatures of meteorites. Earth and Planetary Science Letters 595, p. 117748 (2022)
Renggli, C. J.; Hellmann, J. L.; Burkhardt, C.; Klemme, S.; Berndt, J.; Pangritz, P.; Kleine, T.: Tellurium isotope fractionation during evaporation from silicate melts. Geochimica et Cosmochimica Acta 339, pp. 35 - 45 (2022)
Burkhardt, C.; Spitzer, F.; Morbidelli, A.; Budde, G.; Render, J. H.; Kruijer, T. S.; Kleine, T.: Terrestrial planet formation from lost inner solar system material. Science Advances 7 (52), eabj7601 (2021)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".