Strassmeier, K. G.; Ilyin, I.; Keles, E.; Mallonn, M.; Järvinen, A.; Weber, M.; Mackebrandt, F.; Hill, J. M.: High-resolution spectroscopy and spectropolarimetry of the total lunar eclipse January 2019. Astronomy and Astrophysics 635, A156 (2020)
Mackebrandt, F.; Mallonn, M.; Ohlert, J. M.; Granzer, T.; Lalitha, S.; Muñoz, A. G.; Gibson, N. P.; Lee, J. W.; Sozzetti, A.; Turner, J. D.et al.; Vaňko, M.; Strassmeier, K. G.: Transmission spectroscopy of the hot Jupiter TrES-3 b: Disproof of an overly large Rayleigh-like feature. Astronomy and Astrophysics 608, A26 (2017)
Mackebrandt, F.: Phantastische Welten und wie sie zu finden sind. Max Planck geht zur Schule, Theodor-Heuss-Gymnasium und Felix-Klein-Gymnasium Göttingen, Göttingen (2021)
Mackebrandt, F.: The stellar pulsation timing method to detect sub-stellar companions. Virtual Annual Meeting of the Astronomische Gesellschaft 2021
, Online (2021)
Mackebrandt, F.; Schuh, S.; Silvotti, R.: The EXOTIME project: Using the stellar pulsation timing method to detect sub-stellar companions. Virtual Annual Meeting of the Astronomische Gesellschaft 2020
(2020)
Mackebrandt, F.; Schuh, S.; Silvotti, R.: The stellar pulsation timing method to detect substellar companions. Annual Meeting of the Astronomische Gesellschaft 2017 , Splinter HotStars, Göttingen, Germany (2017)
Mackebrandt, F.; Schuh, S.: The stellar pulsation timing method to detect substellar companions. Planets Days Workshop, IAU General Assembly 2018, Vienna, Austria (2018)
Mackebrandt, F.; Schuh, S.: The stellar pulsation timing detection method for substellar companions. The PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era, Warwick, UK (2017)
Mackebrandt, F.: The stellar pulsation timing method to detect substellar companions. 2nd Advanced School on Exoplanetary Science, Vietri sul Mare, Italy (2017)
Mackebrandt, F.; Schuh, S.: The stellar pulsation timing detection method for substellar companions. Planetary Systems Beyond The Main Sequence II, Technion, Haifa, Israel (2017)
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.