Angelou, G. C.; Bellinger, E. P.; Hekker, S.; Mints, A.; Elsworth, Y.; Basu, S.; Weiss, A.: Convective boundary mixing in low- and intermediate-mass stars – I. Core properties from pressure-mode asteroseismology. Monthly Notices of the Royal Astronomical Society 493 (4), pp. 4987 - 5004 (2020)
Mints, A.; Hekker, S.: A Unified tool to estimate Distances, Ages, and Masses (UniDAM) from spectrophotometric data. Astronomy and Astrophysics 604, A108 (2017)
Mints, A.; Schwope, A.; Rosen, S.; Pineau, F.-X.; Carrera, F.: The Integrated Cluster Finder for the ARCHES project. Astronomy and Astrophysics 597, A2 (2017)
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.