Bourdin, P. A.; Bingert, S.; Peter, H.: Scaling laws of coronal loops compared to a 3D MHD model of an active region. Astronomy and Astrophysics 589, A86 (2016)
Bourdin, P. A.; Bingert, S.; Peter, H.: Coronal energy input and dissipation in a solar active region 3D MHD model. Astronomy and Astrophysics 580, A72 (2015)
Bourdin, P.-A.; Bingert, S.; Peter, H.: Observationally driven 3D magnetohydrodynamics model of the solar corona above an active region. Astronomy and Astrophysics 555, A123 (2013)
Bourdin, P.-A.: Observationally driven 3D MHD model of the solar corona above a magnetically active region. Dissertation, Georg‐August‐Univ., Göttingen (2013)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".