Käpylä, M. J.; Käpylä, P. J.; Olspert, N.; Brandenburg, A.; Warnecke, J.; Gent, F. A.: Multiple dynamo modes as a mechanism for long-term solar activity variations. SOLARNET IV MEETING: The Physics of the Sun from the Interior to the Outer Atmosphere, Lanzarote, Spain (2017)
Käpylä, P. J.; Käpylä, M. J.; Rheinhardt, M.; Olspert, N.; Brandenburg, A.; Warnecke, J.; Lagg, A.; Arlt, R.: Stellar convection models with Kramers-type opacity law. Session 'Fundamental aspects of turbulent convection,' of the DPG-FrÜhjahrstagung, Dresden, Germany (2017)
Käpylä, P. J.; Käpylä, M. J.; Rheinhardt, M.; Olspert, N.; Brandenburg, A.; Warnecke, J.; Lagg, A.; Arlt, R.: Implications of extended subadiabtic layers for stellar dynamos. 2nd Conference on Natural Dynamos, Valtice, Czech Republic (2017)
Viviani, M.; Cole, E.; Käpylä, P. J.; Käpylä, M. J.; Olspert, N.; Warnecke, J.: Axi- to nonaxisymmetric dynamo transition in semi-global convection models. 14th Potsdam Thinkshop: Stellar magnetism: Challenges, Connections and Prospects, Potsdam, Germany (2017)
Viviani, M.; Cole-Kodicara, E.; Käpylä, P. J.; Käpylä, M. J.; Olspert, N.; Warnecke, J.: The influence of rotation in the transition from axi- to nonaxisymmetric dynamos. Rocks \& Stars II, Göttingen, Germany (2017)
Viviani, M.; Cole-Kodicara, E.; Käpylä, P. J.; Käpylä, M. J.; Olspert, N.; Warnecke, J.: Axi- to nonaxisymmetric dynamo transition in stellar models with varying rotation rate. AG2017 The many Scales of Universe: Galaxies, theirs Suns and their Planets, Göttingen, Germany (2017)
Warnecke, J.: Measuring magnetic helicity fluxes in global solar and stellar dynamo. Max Planck Princeton Center for Plasma Physics Meeting, Greidswald, Germany (2017)
Warnecke, J.: Dynamo mechanism for magnetic activity and cycles of stars. Splitter Session: Solar and stellar activity and variability at Annual Meeting of the Astronomische Gesellschaft , Göttingen, Germany (2017)
Warnecke, J.: Determine dynamo mechanisms and the role of helicity in compressible convective dynamo simulations of solar-like stars. Helicity Thinkshop 3, Tokio, Japan (2017)
Warnecke, J.; Käpylä, P. J.; Käpylä, M. J.; Rheinhard, M.; Brandenburg, A.: Understanding dynamo mechanisms from 3D convection simulations of the Sun. SOLARNET IV Meeting: The Physics of the Sun from the Interior to the Outer Atmosphere., Lanzarote, Spain (2017)
Warnecke, J.; Käpylä, P. J.; Käpylä, M. J.; Rheinhardt, M.; Brandenburg, A.: Identifying dynamo mechanism for slowly and rapidly rotating stars. 14th Potsdam Thinkshop: Stellar Magnetism: Challenges, Connections, and Prospects, Potsdam, Germany (2017)
Warnecke, J.; Käpylä, P. J.; Käpylä, M. J.; Rheinhardt, M.; Brandenburg, A.: Determine dynamo mechanisms and magnetic helicity fluxes in compressible convective dynamo simulations of solar-like stars. 2nd Conference on Natural Dynamos, Valtice, Czech Republic (2017)
Warnecke, J.: Connecting the solar dynamo below the surface with ejection of twisted magnetic fields above the surface. Space Climate 6, Levi, Finland (2016)
Warnecke, J.: The Role of magnetic helicity and its fluxes for the dynamo. Max Planck Princeton Center for Plasma Physics Meeting, Princeton, USA (2016)
Warnecke, J.; Käpylä, P. J.; Käpylä, M. J.; Rheinhard, M.; Brandenburg, A.: The Test-Field Method and Its Applications. ax Planck Princeton Center for Plasma Physics Meeting, Princeton, USA (2016)
Warnecke, J.; Käpylä, P. J.; Käpylä, M. J.; Rheinhardt, M.; Brandenburg, A.: Understanding dynamo mechanisms from 3D convection simulations of the Sun. MHD Days, Göttingen, Germany (2016)
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).