European Solar Physics Online Seminar Archive

Following an initiative by the University of Oslo the MPS will participate in the "European Solar Physics Online Seminar" series (ESPOS). Details can be found here: https://folk.uio.no/tiago/espos/
The aim of this video conference series is to promote ideas more widely with a specialized audience, and give some exposure to cutting-edge research for students and other young researchers that do not regularly travel to conferences. The ESPOS series is planned to take place every second Thursday at 11am.
Host: Shahin Jafarzadeh

ESPOS Seminar: Formation and disappearance of a penumbra: Recent results (Mariarita Murabito)

ESPOS
The physical conditions resulting in the formation and disappearance of penumbral regions are poorly understood. We investigated these conditions by using high-resolution spectropolarimetric observations of a sunspot penumbra from different instruments at ground- and space-based telescopes, namely the SST/CRISP, SDO/HMI, and Hinode/SP. The studied data allowed us to assess the evolution of the magnetic and velocity properties of plasma in the observed region and to analyze the role of several processes found therein. The penumbra forms only on one side of the observed region, characterized by the absence of an overlying magnetic canopy. The penumbra later disappears progressively in time and space. This final evolution of the studied region seems to be governed by the presence of moving magnetic features (MMFs) and of overlying canopies. [more]

ESPOS Seminar: On the Differences in the Periodic Behavior of Magnetic Helicity Flux in Flaring Active Regions (Szabolcs Soós)

ESPOS
Observational precursors of large solar flares provide a basis for future operational systems for forecasting. We studied the evolution of the normalized emergence (EM), shearing (SH), and total (T) magnetic helicity flux components for 14 flaring (with at least one X-class flare) and 14 nonflaring (<M5-class flares) active regions (ARs) using the Space-weather Helioseismic Magnetic Imager Active Region Patches vector magnetic field data. Each of the selected ARs contain a δ-type spot. The three helicity components of these ARs were analyzed using wavelet analysis. Localized peaks of the wavelet power spectrum (WPS) were identified and statistically investigated. We find that (i) the probability density function of the identified WPS peaks for all the EM/SH/T profiles can be fitted with a set of Gaussian functions centered at distinct periods between ∼3 and 20 hr. (ii) There is a noticeable difference in the distribution of periods found in the EM profiles between the flaring and nonflaring ARs, while no significant difference is found in the SH and T profiles. (iii) In flaring ARs, the distributions of the shorter EM/SH/T periods (<10 hr) split up into two groups after flares, while the longer periods (>10 hr) do not change. (iv) When the EM periodicity does not contain harmonics, the ARs do not host a large energetic flare. (v) Finally, significant power at long periods (∼20 hr) in the T and EM components may serve as a precursor for large energetic flares. [more]

ESPOS Seminar: Small-scale MHD waves in the solar chromosphere with ALMA (Juan Camilo Guevara Gómez)

ESPOS

Validation of a wave heated 3D MHD coronal-wind model using Polarized Brightness and EUV observations

ESPOS

ESPOS Seminar: MHD wave propagation asymmetric solar waveguides (Noémi Kinga Zsámberger)

ESPOS
The analytical and numerical modelling of the behaviour of magnetohydrodynamic (MHD) waves in various magnetic geometries is a constantly evolving, active area of research within the field of solar magneto-seismology. Here, we present our findings on MHD wave propagation and instabilities in a family of asymmetric Cartesian waveguide models. Thanks to the introduction of various sources of asymmetry (background density, magnetic field or flow speed), this generalisation of classical (symmetric) slab geometries allows us to refine our modelling of several important features in the richly structured solar atmosphere. Including background asymmetry in these configurations influences the phase speeds and cut-off frequencies of the eigenmodes, and, in the case of flow asymmetry, it can also change the threshold for the onset of the Kelvin-Helmholtz instability. Furthermore, the asymmetric nature of the models allows us to develop solar magneto-seismologic tools and provide efficient methods for obtaining further information about the solar plasma from current and future high-resolution observations of multi-layered waveguides (such as e.g. magnetic bright points or light walls). [more]
Plasmoid-mediated fast magnetic reconnection plays a fundamental role in driving explosive dynamics and heating in the solar atmosphere, but relatively little is known about how it develops in partially ionised plasmas (PIP) of the chromosphere. Partial ionisation can largely alter the dynamics of the coalescence instability, which promotes fast reconnection and forms a turbulent reconnecting current sheet through plasmoid interaction, but it is still unclear to what extent PIP effects influence this process. In this talk, I investigate the role of collisional ionisation and recombination in the development of plasmoid coalescence: I will present 1D and 2.5D simulations of a two-fluid model of a partially ionised plasma (PIP) and show how the dynamics change in the presence and absence of ionisation and recombination processes. The aim is to understand whether these two-fluid coupling processes play a role in accelerating reconnection. In 1D calculations, as the current sheet collapses it drives a burst of ionisation. This results in the current of the current sheet growing at a slower rate than calculations without ionisation and recombination, and in a thicker current sheet. In 2.5D calculations, it is found that, in general, ionisation-recombination process slow down the coalescence. Unlike our previous models that included thermal collisions only, ionisation and recombination stabilise current sheets and suppress non-linear dynamics, with turbulent reconnection occurring in limited cases: bursts of ionisation lead to the formation of thicker current sheets, even when radiative losses are included to cool the system. Therefore, the coalescence time scale is very sensitive to ionisation-recombination processes. [more]
Go to Editor View