Cameron, R.; Schüssler, M.: A robust correlation between growth rate and amplitude of solar cycles: consequences for prediction methods. Astrophysical Journal 685, pp. 1291 - 1296 (2008)
Cheung, M. C. M.; Schüssler, M.; Tarbell, T. D.; Title, A. M.: Solar Surface Emerging Flux Regions: A Comparative Study of Radiative MHD Modeling and Hinode SOT Observations. Astrophysical Journal 687, pp. 1373 - 1387 (2008)
Danilovic, S.; Gandorfer, A.; Lagg, A.; Schüssler, M.; Solanki, S. K.; Vögler, A.; Katsukawa, Y.; Tsuneta, S.: The intensity contrast of solar granulation: comparing Hinode SP results with MHD simulations. Astronomy and Astrophysics 484, p. L17 (2008)
Schüssler, M.; Vögler, A.: Strong horizontal photospheric magnetic field in a surface dynamo simulation. Astronomy and Astrophysics 481, pp. L5 - L8 (2008)
Cheung, M.; Schüssler, M.; Moreno-Insertis, F.: The origin of the reversed granulation in the solar photosphere. Astronomy and Astrophysics 461, pp. 1163 - 1171 (2007)
Cheung, M. C. M.; Schüssler, M.; Moreno-Insertis, F.: Magnetic flux emergence in granular convection: radiative MHD simulations and observational signatures. Astronomy and Astrophysics 467, pp. 703 - 719 (2007)
Holzwarth, V.; Schüssler, M.; Schmitt, D.: Flow instabilities of magnetic flux tubes - II. Longitudinal flow. Astronomy and Astrophysics 469, pp. 11 - 17 (2007)
Işık, E.; Schüssler, M.; Solanki, S. K.: Magnetic flux transport on active cool stars and starspot lifetimes. Astronomy and Astrophysics 464, pp. 1049 - 1057 (2007)
Baumann, I.; Schmitt, D.; Schüssler, M.: A necessary extension of the surface flux transport model. Astronomy and Astrophysics 446, pp. 307 - 314 (2006)
Cheung, M. C. M.; Moreno-Insertis, F.; Schüssler, M.: Moving magnetic tubes: fragmentation, vortex streets and the limit of the approximation of thin flux tubes. Astronomy and Astrophysics 451, pp. 303 - 317 (2006)
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.